Monthly Tech-Tip | No tracking! No ads! |
These two mugs have the Alberta Slip base cone 6 GA6-A glaze on the inside and GA6-C on the outside (it just adds rutile to GA6-A). The left one was cooled normally (kiln off at cone 6 after soak). For the mug on the right, the kiln was soaked for half an hour at 1800F on the way down to develop the rutile blue glaze on the outside. But during this period crystallization occurred on the inside also. This provides an insight into my this GA6-A base hosts floating blue effects but GA6-B does not: The amount of Al2O3 is much lower, that improves melt fluidity and acts as a catalyst for crystallization.
Usable, reliable, non-crazing floating blue glazes are difficult to achieve at cone 6. Not these, they pass all the tests yet fire like the original classic G2826R floating blue from David Shaner. Both have been applied at moderate thickness on Plainsman M325 (using a slurry of about 1.43-1.45 specific gravity, higher values end up getting them on too thick). The Ravenscrag version (left) highlights contours better (the edges are black because of the black engobe underneath). It also produces the blue color whether or not the kiln is slow-cooled (although drop-and-hold PLC6DS schedule usually fires more blue). The Alberta Slip version has zero cobalt so it is less expensive to make (but it does require the C6DHSC slow-cool firing schedule). It produces a deeper color over the L3954F black engobe on these pieces. Both of these produce a wide range of effects with different thicknesses, bodies and firing schedules.
Rutile blue glazes are actually titanium blues (because rutile mineral is an impure source of TiO2 and Fe2O3). The iron and titanium in the rutile react to form the floating blue effect. The GA6-C recipe has always relied on a 4% rutile addition. Its GA6-A base recipe contains significant iron (because of the 80% Alberta Slip), so could titanium oxide deliver the same floating blue effect? Yes. These mugs are M390 clay. The top left one is the standard GA6-C (with rutile) fired using the C6DHSC slow-cool firing schedule (the bottom left normal cool PLC6DS schedule produces little color). But the ones on the right switch the 4% rutile for titanium dioxide (the L4655 recipe). The top right was fired using the slow cool, the bottom right was the normal cool schedule. Titanium is a much more consistent and reliable material than rutile. If it can produce an excellent blue color is produced even without a slow cool (lower right) then it is a better long-range choice.
The L4655 floating blue recipe is on the outside of the mug. It adds titanium to the GA6-A base. We wanted to reduce the thermal expansion to minimize the likelihood of crazing. So the obvious question was: Could we substitute the Ferro Frit 3134 for Frit 3195 in the base (effectively using GA6-B instead of GA6-A)? The calculation showed that the thermal expansion should drop from 7.6 to 7.2. Unfortunately, it did not work. The two tiles in the front show that (the one on the right adds 2% iron, we thought that might enhance the rutile blue effect). Why did this fail? Likely the raising of the Al2O3 makes the melt stiffer, that is preventing the freedom of movement needed to form the blue crystalline phases.
Glossary |
Rutile Blue Glazes
A type of ceramic glaze in which the surface variegates and crystallizes on cooling in the presence of titanium and iron (usually sourced by rutile) |
---|---|
Glossary |
Crystallization
Ceramic glazes form crystals on cooling if the chemistry is right and the rate of cool is slow enough to permit molecular movement to the preferred orientation. |
Recipes |
GA6-A - Alberta Slip Cone 6 transparent honey glaze
An amber-colored glaze that produces a clean, micro bubble free transparent glass on brown and red burning stonewares. |
Buy me a coffee and we can talk