Monthly Tech-Tip | No tracking! No ads! |
This spoon was dipped into a ceramic dipping engobe, L3954B. It contains no CMC gum, it was only flocculated using powdered Epsom salts. Without the Epsom salts, the engobe runs off, leaving only a film. But, when turned into a thixotropic slurry, it stays on the spoon in an even layer (as a gel), then hardens as it dewaters (left) and finally dries completely (right). With no cracks! It also fires to cone 03 with no cracks. Of course, if this were fired high enough, it would begin to shrink, crack, crawl, melt and then craze, ceasing to be an engobe. Of course, special low-expansion frits and additives and mixing, preparation and application techniques make enamels, which do melt, possible for metals.
This picture has its own page with more detail, click here to see it.
These are pure Custer feldspar and Nepheline Syenite. The coverage is perfectly even on both. No drips. Yet no clay is present. The secret? Epsom salts. I slurried the two powders in water until the flow was like heavy cream. I added more water to thin and then started adding the Epsom salts (powdered). After only a pinch or two, they both gelled. Then I added more water and more Epsom salts until they thickened again and gelled even better. The result is a thixotropic slurry. They both applied beautifully to these porcelains. The gelled consistency prevented them from settling in seconds to a hard layer on the bucket bottom. Could you do this with pure silica? Yes! The lesson: If these will suspend by gelling with Epsom salts, then any glaze will. You never need to tolerate settling or uneven coverage for single-layer dip-glazing again!
Glossary |
Flocculation
The flocculation process enables technicians in ceramics to create an engobe or glaze slurry that gels and goes on to ware in a thick yet even, non-dripping layer. |
Materials |
Epsom Salts
|
Buy me a coffee and we can talk