Use the contact form at the bottom on almost all the pages on this site or let's have a together.
Other ways to Support My Work
Subscribe to Insight-Live.com. It is about doing testing and development, not letting information slip away.
Help Me on Social
Tony Hansen
Follow me on
Login to your online account
Chemistry plus physics.
Maintain your recipes, test results, firing schedules, pictures, materials, projects, etc.
Access your data from any connected device. Import desktop Insight data (and of other products).
Group accounts for industry and education. Private accounts for potters.
Get started.
Download for Mac, PC, Linux
Interactive glaze chemistry for the desktop. Free (no longer in development but still maintained, M1 Mac version now available).
Download here or in the Files panel within your Insight-live.com account.
What people have said about Digitalfire
I have the downloaded version of The Magic of Fire for several years now and find it excellent. I'm now ready to purchase level 2 of Insight. Your resources are truly amazing and as an ex electronic engineer (now a potter), I really am impressed with your analytical approaches. Your site is almost a complete college level course on pottery (less the throwing & handbuilding).
This is the greatest site on the planet!
Where have I been. I could have used this site about a thousand times and would have saved myself about a thousand hours over the past years had I been aware of the remarkable information provided here.
I must say I am amazed by what I saw here. I am even more surprised to see so much of cermaic material stuff here.
I found your article http://ceramic-materials.com/cermat/education/226.html about majolica to be a real beacon, about a year ago, and am just producing finished ware now. I read through Magic of Fire yesterday and found the information on whiting causing gas problems/pinholes etc., which was immediately valuable with a problem I have been having.
I enjoy using your software and website.
Keep up the fantastic work!
I have a background in Geology (BS-1973-New Mexico Tech), and with a few other degrees here and there - and have been doing quite a bit of Pythoning, and hanging-around my wife who does (I think (but then, of COURSE I am biased)) terrific pots... I am always interested in what she does with glazes (especially when I see the mineral-names from my Geology days on the bins in her studio... BUT - as an "engineer", sometimes I want 'more' knowledge - and I find your web-site VERY VERY good at that, it tells me a lot of things - gives me 'value added' and 'information' that I haven't found elsewhere! Especially when I think about 'geo-chem'.
I think that I have read almost every article I found on digitalfire.com ... I admire your knowledge about glaze mess, it is very very complicated to me.
Thank you for your wonderful site i am new to home made glazes and am teaching myself... your site is so help full thank you.
What people have said about Insight-Live
I love your software and I really appreciate you being there when I need help. Keep on being amazing.
I am still enjoying insight every day. You were right - having it in the cloud is a huge advantage.
WOW, WOW, WHAT GREAT INFO! thankyou! I am going to pass your site on to someone i know who is more keen on the science of glazes, than the potting, unlike me... she will love your test works and pics Wow! Thanks again.
The knowledge and information you share on digital fire is a rare gem on the internet. I greatly appreciate your writing style. To the point and full of facts. I am wanting to be more active in my glaze creation and begin to make my own glazes. This, to me seems like a huge step away from the safe and what I know of the glazes I have been working with.
I have been following your Site and posts continually and gained a greater understanding. Thank you for that. It is so exciting to have a positive outcome from your glazes rather then the bought glazes. ... All good and exciting. My pottery clients are excited and have recognized the difference. There is nothing better than to pass on the best work possible to those who love the pots. So much work and testing, but well worth it. Thank you so much.
Extremely useful resource Digital Fire. By the way your writing style is truly unique and is easily understandable even though of technical nature.
You have no clue how much this site has inspired and helped me develop my love for ceramics and chemistry.
You have such a brilliant analytical mind, able to find solutions to many ceramic problems. You have accomplished so much in your life, helping us potters understand what we are doing. I cannot thank you enough for your vast ceramic reference library online. I think you are a national treasure.
Had quite quite a few problems learning to enter recipes.
Thank you for all of the information you publish on your website. Digitalfire has been my primary resource for researching raw materials and I will be soon be subscribing to Insight. Thank you so much for all of your work. My fellow students and I refer to your website almost daily.
First off, I want to thank you for building Digitalfire. It is an incredibly valuable ceramic resource.
Blog
I Tested a Found-Clay:
Was it suitable for pottery?
Would you like to be able to use your own found-clays, ones native to your area or even your property, in your production? Follow me as we evaluate a mystery clay sample provided by a potter who wants to do exactly this. I will use ordinary tools that any potter either already has or can buy at low cost. We will describe this clay in terms of plastic clay bodies and common ceramic materials that most potters already use. The potter who submitted it has worked enough with the material to suspect it has potential and he wants to know how to best utilize it (e.g. at what temperature, with what glazes, mixed with what, processed in what way). In technical terms what we are doing is called "characterization".
Watch this 30-second video to see. Gelled (thixotropic) slurries for dipping are so much better to work with; you'll never go back once you have mastered this DIY technique. While some glazes and engobes gel naturally, especially those with high clay content, these almost always work best when the water content is within a certain range, so fine-tuning like this is still needed. Although not shown here, if over-gelling happens, a drip or two of deflocculant (e.g. Darvan) brings back the fluidity, this is more likely to happen with engobes since they need more gel (for dipping and even more for painting). A side benefit of this: No settling in the bucket.
Quick fix to make these spareless molds more usable
These legacy slip casting molds from Medalta Potteries (made from 80 year old masters). They are difficult and time-consuming to use and produce less than optimal results because they have no top section (this no spare) and require constant filling during cast time. Demolding requires cutting the lip flat (top right). But a lot of time trimming and sponging is needed to round it again, but making the lip even and symmetric is difficult to say the least.
I found a way to make these molds easier to use and better: A 3D printed spare/pouring spout that also defines a rounded rim. It can be glued to the top of the mold with slip. Of course, the PLA print is not absorbent, but this still works because the mold top edge is able to dewater the slip even inside the contoured top it forms. The print also acts as a cutting guide to cleanly cut anway any clay inside the spout section, leaving a clean line inside the lip. And the shrinkage of the clay pulls the pitcher lip away from the print.
The Heartbeat of the Kiln: The Indispensable Plant Technician
This page is dedicated to the skill and intuition of the Plant Technicians who kept the ceramic industry in North America thriving before the 1980s. Before we started clicking buttons to outsource things. They weren’t “role fillers” supplied by HR, they were “believers”. They understood everything in the plant; the equipment, processes, procedures, materials, recipes, kilns and firing. Managers set the pace, but the technicians made the pace possible. It was a time of local knowledge and company loyalty. They weren't temporary consultants or voices on a helpline; they owned and solved the problems. They were also mentors who passed their knowledge down.
These binders hold 40 years of recipes and techniques, kept by Albert E. Holthaus at Modern Art Products and Tierra Royal Potteries. Men like him were a legacy; they were the true "operating system" of a golden age of independence. They ensured the wheels kept turning, the fires kept burning and the quality kept enduring.
This batch-to-formula calculation was done by Albert E. Holthaus at Modern Art Products Company in Kansas City, MO (during the 1960s). Doing this not only seems quaint today, but suppliers put up roadblocks to doing it.
Notice that he took the manufacturer-supplied percentage analysis for each material (bottom) and calculated the unity formula for use in his batch to formula calculation (top). The recipe material weight amounts are missing in the latter; this appears to be his effort to create a documentation page of the recipe on the oxide formula level (this is what mattered to him). It was a time when frit formulas were published by their manufacturers. He also calculated the glaze's chemistry as a percentage analysis, likely to lay a basis to assess it against stated requirements from stain suppliers (certain stains only work when the host glaze chemistry meets a certain profile).
Doing this now is so much simpler. But almost no one actually does! The closest most technicians get to oxide formulas is choosing a frit from a list of ones for which the chemistry given by the manufacturer is only approximate.
This reduction stoneware glaze is producing white streaks on some pieces (left center). The body is a coarse iron stoneware. A magnification is needed to better explain this.
It is 2025, many smartphones now have dedicated macro lenses and can be held as close as a 1 centimeter. They automatically sense placement and switch to using the macro lens. Of course, the phone must be held rock steady and good lighting is essential. If you are a doubter of what they can produce, look at the two magnifications on the right. On the top one, the white streak is clearly visible, floating in a sea of phase-separated glass patterned by earlier-escaping bubbles. The extreme magnification on the bottom right appears to implicate tiny crystals growing in an area where late bubbles have escaped, changing the pattern of phase separation. This doesn’t yet explain the cause, but it is valuable information courtesy of a macro lens.
There’s DIY magic in the ground beneath your feet!
Place: Vernon, Alabama.
Story: Potter's friend sends a picture of an outcrop of white clay in the ditch near his driveway.
Result: A DIY claybody is born.
This planet is full of accessible clay deposits. Many can be used as-is for stoneware, earthenware and even porcelain. Characterizing this clay is the first step. How plastic is it? What does it look like when fired at different temperatures? Does it contain impurities that need to be sieved out? Does it dry without cracking? Does it work with glazes? Etc.
A journey of clay discovery to a finished piece is one of the most rewarding experiences you can have as a potter. And be more self-reliant. You don’t need special gear, just curiosity, eyes that notice, a few simple tools, and a willingness to experiment and learn to characterize clays. And one more thing: An organized way to keep records of your testing. Think of an insight-live account as a commitment to building experience; it is your memory of everything that worked. And didn't.
Or, more correctly, is this one a clay? The way I found out was to test it myself. That's what I did.
The giveaway of its marine origin is the tiny shells found on the sieve. The Cretaceous Sea once connected the Arctic Ocean with the Gulf of Mexico, covering the great plains of North America. Sedimentation left this deposit of Diatomaceous earth in central Alberta, Canada. This sample contains enough clay that I was able to slurry it up, dewater it on a plaster bat and then prepare SHAB test bars to try it at five temperatures. At cone 10 (bottom right) the porosity is 62%! And the LOI is 32% (others can go as high at 50%). Why? Raw diatomaceous earth contains physically bound interlayer water, it leaves by ~100–300 °C. It also contains structural hydroxyl water (in clay minerals or hydrated silica phases). This “chemical water” burns off between ~400–700 °C. And, organic matter from ancient algae, plants, or soil contamination also burns out between ~300–800 °C (as CO₂ and other gases). Finally, the carbonates (e.g. shells shown here) decompose around 700–900 °C, releasing CO₂. That alone can cause a big weight loss.
Note the test bars under it. Where this bar was sitting there is glassy deposit. What is that? Diatomaceous earth is mostly amorphous silica, but it almost always contains alkali and alkaline-earth impurities and sometimes boron. The latter can literally drain out, as a liquid. However here, the alkalis have volatilized (vaporized) or form alkali-rich fumes. These landed on nearby surfaces to react with the other test bars to form a thin alkali-silicate glass layer (similar to what happens in soda firing).
This is G3948A (similar to the popular Amaco Ancient Copper product). To get this stunning result, it needs to be applied thickly. Therefore, it runs a lot. But the catcher glaze around the bottom of these mugs has stopped the flow. The catcher is a glossy black, G3914A (but Amaco Obsidian would also likely work). I have learned to put it on with the right height (about 2cm) and right thickness, and then apply wax emulsion to prevent the iron red glaze from sticking during dipping. The inside glaze, G2926B, is one I have tested and developed to fit Plainsmanclay bodies as a liner.
Converting a glossy transparent glaze to a calcia matte
A ten-minute video to give glaze nerds goose bumps!
Watch the G1214Z video to see me convert the G1214Mcone 6 clear base into G1214Z cone 6 calcia matte using simple glaze chemistry and recipe logic. This first appeared in the Digitalfiredesktop Insight instruction manual 30 years ago. It is an understatement to say that this process is interesting if you want to know more about glazes, their chemistry and recipe logic. Watch this video and see me adjust the recipe of my high-calcium transparent cone 6 glaze to convert it into a calcia matte. In an Insight-live.com account, the process is easy enough for anyone. We'll cut the Si:Al ratio, increase the CaO, maintain the thermal expansion for glaze fit and make the recipe shrinkage-adjustable using a mix of calcinedkaolin and raw kaolin. We will even compare it with the High Calcium Semimatte from Mastering Glazes.