Monthly Tech-Tip | No tracking! No ads! |
Left: VC71 cone 6 silky matte glaze. Right: An adjustment that adds boron melter and SiO2/Al2O3 (which preserves their ratio). The dramatic improvement in melting was unexpected. Even though B has the same Si:Al ratio, it is completely glossy. Why? A (left) is simply not melting completely, that is why it is silky matte (not a true matte). Yet it feels like a good silky matte and is resistant to cutlery marking. Why? Touch alone can be misleading. Cutlery marking usually happens with matte glazes or heavily opacified whites, this is neither, it is an under-fired glossy glaze, fired just high enough not to mark.
The top glaze is V.C. 71, a popular matte cone 6 glaze used by potters. Bottom is G2934 matte, a public domain recipe produced by Plainsman Clays. The latter is a high-MgO matte, it melts well and does not cutlery mark or stain easily. As evidence that it is a true matte, notice that it is still matte when fired to cone 7 or 8. V.C. 71, while having a similar pleasant silky matte surface at cone 6, converts to a glossy if fired higher. This suggests that the cone 6 matteness is due to incomplete melting. For the same reason, it is whiter in color (as soon as it begins to melt and have depth the color darkens).
These two glazes look the same, they are both cone 6 satin mattes. On the same porcelain. But the matteness "mechanism" of the one on the left, VC71, is a low Si:Al ratio melted by zinc and sodium. The mechanism of the one on the right, G2934, is high MgO melted by enough boron to also have plenty of SiO2 and Al2O3. The "baggage" of the mechanism on the left is high thermal expansion and crazing (drastically reducing strength and providing a space for a germ zoo). If your ware develops this your customers will bring it back for replacement. No change in firing will fix this, the body and glaze are not expansion compatible. Period.
Glossary |
Cutlery Marking
Ceramic glazes that mark from cutlery are either not properly melted (lack flux), melted too much (lacking SiO2 and Al2O3), or have a micro-abrasive surface that abrades metal from cutlery. |
---|
Buy me a coffee and we can talk