Monthly Tech-Tip | No tracking! No ads! |
Notice that from cone 06 to 04, the temperature difference between cones is far greater than at any other range. But this situation changes approaching cone 3, where the difference from one cone to the next drops and accelerates (thus the curved line). Firing a kiln accurate to cone 2, by cones, is difficult since the cone 1 and 3 guide and guard cones fall in a similar fashion. From cone 4 and up cones prove to be a much more stable indication of temperature and heat-work. Not surprisingly, it makes more sense to trust a pyrometer in the cone 02-3 range. Low fire terra cotta bodies vitrify in a similar manner.
Orton cones have become much less relevant in recent years. That being said they are still commonly used to calibrate kiln controllers. Most people just use one cone now (rather than the guard, firing and guide cones of the past). The problem illustrated in this diagram is our reason for doing that. At our typical firing rates, we found that bending the middle cone to 5 o'clock pretty well always started the guard cone. Orton said when that happens "you have exceeded the best time-temperature relationship". Thus, over time, we got into the habit of bending the firing cone to 3 o'clock (as shown in #1). Notice the situation in #2, that is not supposed to happen but often does. The first guide cone should be slumping, not just touching. And the guard cone should not be starting. Now we just use one cone bent to 5 o'clock to callibrate our electronic controllers.
Glossary |
Cone 1
|
---|---|
Glossary |
Pyrometric Cone
Cones are ceramic and bend through a narrow temperature range. They used to be actively used to determine when firings were completed but now are used to calibrate electronic devices. |
Buy me a coffee and we can talk