Monthly Tech-Tip | No tracking! No ads! |
Click the link below to go to this page
This page is the gateway to the most comprehensive source of information about the material and what it actually is. It will get you on track to removing this troublesome material from your recipes and using frits instead.
Gerstley Borate has just become Costly Borate. The supplier, LagunaClay.com, likely raised the pice to wake us all up to take action in substituting it before supplies run out. It is a ceramic glaze flux, sourcing boron to melt far better than any other common raw material. It has been a foundation material in low and middle temperature pottery glaze recipes for many decades. Potters have a love/hate relationship with it: Enjoying its low melting point but enduring its problems (inconsistency, gelling of the slurry, crawling, micro-bubbles, boron-blue discoloration). Strangely most people have used it without knowing what it really was. And few realize how easy it is to replace. Yes, existing substitutes work sometimes - but it is better to adjust each glaze recipe to source boron from a frit (fixing other issues also). Please read that last statement carefully. It did not say that there is any frit that can substitute. It said that frits can source boron.
This is a GBMF test, it compares the melt fluidity of the Gerstley Borate based cone 6 Perkins Studio clear recipe original (left, our code number G2926) and a reformulated version that sources the boron from Ferro Frit 3134 instead (right, our code number G2926A). The latter is less amber in color (indicating less iron). The good news was that it melted so much better that we were able to add significant Al2O3 and SiO2 to really drop the thermal expansion (improving glaze fit on common clay bodies), which produced our G2926B base recipe. Every time I use it I think of how unfortunate we would have been had we continued to use the Gerstley Borate original.
This frit, or any of similar chemistry (e.g. Fusion F-12) IS NOT A 1:1 SUBSTITUTE for Gerstley Borate, their chemistries are too different. That being said, the frit sources lots of B2O3, that makes it a candidate to weave into recipes as the source of boron. To show the difference I have put 100 parts of each in side-by-side recipes in my Insight-live.com account, set the calculation type to non-unity formula and increased the frit until the B2O3 in the two match. Notice it takes 118g of the frit to source the same amount of B2O3 as 100 GB. Notice also that the frit sources almost triple the amount of Na2O per weight unit (that is a big deal because it means the recipe containing the Gerstley Borate to be substituted needs an Na2O-sourcing material that can be reduced to compensate). And the frit sources 3.5 times the SiO2 (other SiO2-sourcing materials in the recipe will need to be cut to compensate). And the Gerstley Borate has significant MgO while the frit has none (so an MgO-sourcing material like talc will be needed). Minor tweaks will also be needed to reduce other sources of CaO (since the frit has quite a bit more). The recipe will also need enough flexibility to do the final matching of Al2O3 and SiO2. The GBMF test confirms the difference at 1700F, these 10-gram balls melted down onto the tiles very differently.
Here the melt fluidity of Gerstley Borate (GB) is being compared to Ferro Frit 3134 (using a GLFL test). Clearly, these are two very different materials. GB is a clay, Frit 3134 is a man made powdered glass. Notice the GB shrinks to about half its original size by 1600F and then suddenly by 1650 it has exploded out of the starting gate and crossed the finish line! The frit, conversely, slowly softens through the entire 1350-1650 range and then starts down the runway between 1650 and 1700F. While it is clear that frit 3134 is not a direct substitute for the Gerstley Borate (GB) it's more gradual melting make it a better source as a source of B2O3 (boron).
The original Floating Blue recipe, our code number G2826R, has been popular for 50 years. But also troublesome (because of a fragile mechanism, poor slurry properties and inconsistencies in Gerstley Borate and rutile). Gillespie Borate, it's 2023 apparent successor, appears to solve most of its issues. These specimens of the recipe were fired using the cone 6 C6DHSC schedule. We have "vintage" Gerstley Borate from the 1990s, that is what was used here.
Top left: Floating Blue using Gerstley Borate (GB) (top) and Gillespie Borate bottom on a buff burning body.
Top right: Same but on a red burning body.
Centre: Melt fluidity GLFL test of the two glazes (GB) on the left.
Bottom: The two recipes and their calculated chemistries.
Clearly, the Floating Blue itself is firing greener than usual. And the Gillespie Borate version is much bluer. You may be used to something in between these two. The green tones could likely be restored by a reduction in the cobalt and increase in the iron oxide. The best news is that at 1.47 specific gravity, Gillespie Borate produces a far better slurry, there is no gelling. And no sign of settling into a hard layer.
The chemistry comparison at the bottom highlights some concerns, the difference is not insignificant. B2O3, Al2O3 and SiO2 are all lower (this could be part of the reason for the differences in color also). For better or worse, the melt fluidity is the same: Very high. This is likely because the percentage of Ulexite is higher (that melts better than Colemanite).
Materials |
Colemanite
A natural source of boron that melts at a very low temperature. |
---|---|
Materials |
Cadycal
|
Materials |
Boraq
This Gerstley Borate substitute was available during the early 2000s. Its recipe and development are well documented but two materials are no longer available. |
Materials |
Turkish Ulexite
A mineral with very high B2O3 and CaO content. |
Materials |
Turkish Colemanite
A mineral with very high B2O3 and CaO content. |
Materials |
Gillespie Borate
A Gerstley Borate substitute that became available during the early 2000s and is still available in 2023. |
Materials |
IMCO Borate
A Gerstley Borate substitute that was available during the early 2000s. |
Media |
Subsitute Gerstley Borate in Floating Blue Using Desktop Insight
Use Desktop Insight to explore ways of calculating substitutes for Gerstley Borate in the popular Floating Blue cone 6 glaze recipe while maintaining or improving the other raw and fired properties of the glaze. |
Recipes |
G2826R - Floating Blue Cone 5-6 Original Glaze Recipe
Floating Blue is a classic cone 6 pottery glaze recipe from David Shaner. Because of the high Gerstley Borate content it is troublesome, difficult. But there are alternatives. |
Buy me a coffee and we can talk