Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Modeling | 3D Printer | 3D Printing Clay | 3D Slicer | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI in Ceramics | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire API | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Digitalfire Taxonomy | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Displacer | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Infill | Ink Jet Printing | Inside-only Glazing | Insight-Live | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner Glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mold Natches | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Pour Spout | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Side Rails | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water Content | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | WooCommerce | Wood Ash Glaze | Wood Firing | WordPress | Zero3 | Zero4 | Zeta Potential

Reactive Glazes

In ceramics, reactive glazes have variegated surfaces that are a product of more melt fluidity and the presence of opacifiers, crystallizers and phase changers.

Key phrases linking here: reactive glazes, reactive glaze, variegation - Learn more

Details

Variegated, or mottled, glazes are those that do not have a homogeneous solid color or character (i.e. like a ceramic sink or toilet bowl). They are often called 'reactive glazes'. They contain higher percentages of fluxes and additions intended to produce one or more variegation mechanisms. Variations in color and texture are highly prized by many ceramists. A variety of mechanisms are used to create the variegation. These include crystal growth, the addition of speckling agents, phase separation, layering, opacity variations (occurring with thickness variations) and multilayering.

You can make your own reactive glazes by adding variegators, opacifiers and colorants to your base glaze, especially one that has a fluid melt (of course you need to be mixing your own glazes). Rutile and titanium are the most common variegators. Zircon and tin oxide are the most common opacifiers. Metal oxides and stains are used for color. Click the link below for the article "Who Do I Start" to learn more about mixing your own glazes. Another method is to locate a reactive glaze at a store page online, then google the glaze name like this: "rutile blue glaze recipe cone 6". Most variegated glazes sold came from well-known recipes or are adjustments to such. Look at the ones you find with a critical eye, use a limit recipe approach to deciding whether to test them.

A catch glaze is often needed to arrest the flow of reactive runny glazes (so they do not run down on to kiln shelves).

Related Information

Cone 10R variegation and crystal magic


This is an example of crystallization in a high MgO matte. MgO normally stiffens the glaze melt forming non-crystal mattes but at cone 10R many cool things happen with metal oxides, even at low percentages. Dolomite and talc are the key MgO sources.

Toilet bowl glaze vs. variegated glaze


Most artists and potters want some sort of visual variegation in their glazes. The cone 6 oxidation mug on the right demonstrates several types. Opacity variation with thickness: The outer blue varies (breaks) to brown on the edges of contours where the glaze layer is thinner. Phase changes: The rutile blue color swirls within because of phase changes within the glass (zones of differing chemistry). Crystallization: The inside glaze is normally a clear amber transparent, but because these were slow cooling in the firing, iron in the glass has crystallized on the surface. Clay color: The mugs are made from a brown clay, the iron within it is bleeding into the blue and amplifying color change on thin sections.

Fluid melt glaze needs uneven surface to develop visual interest


This is the same glaze on the outside of these two pieces. It develops the variegated deep blue character only when thick. But if it were applied thick enough on the left piece it would run off onto the kiln shelf. However the recesses in the texture-rolled surface of the one on the right have caught the flow, creating the thicknesses needed to get the color. Another factor is that the piece on the right is buff stoneware. Thus the clay contains some iron and it is bleeding into the glaze to help develop the color.

Layering glazes to get variegation


Example of the variegation produced by layering a white glaze of stiffer melt (a matte) over a darker glaze of more fluid melt (a glossy). This was fired at cone 6. The body is a stoneware and the glazes employ calcium carbonate to encourage bubbling during melting, each bubble reveals the color and texture of the underlying glaze layer. It is also possible to get this effect using the same base glaze (stained different colors).

Titanium Dioxide in a cone 6 calcium matte glaze


Titainium glaze sample tile

The glaze is G1214Z1 cone 6 base calcium matte on Plainsman M390 fired at cone 6 using the PLC6DS schedule. 5% titanium dioxide has been added. Titanium can create reactive glazes, like rutile, with no other colorants added. This effect also works well on matte surfaces, but the glaze needs good melt fluidity (that is good because functional mattes melt well). Calcium mattes host crystallization and work particularly well. Because titanium dioxide does not contain iron oxide lighter colors and better blues are possible compared to rutile (iron is still needed by it is coming from the body here). Like rutile, the effects are dependent on the cooling rate of the firing, slower cools produce more reactivity. Even application without drips is important (mixing as a thixotropic dipping glaze is best). This appearance also depends on using dark burning body or engobe.

Three visual glaze mechanisms make this piece unique


"Mechanisms" are specifics about the glaze application or preparation process, the materials, the chemistry or firing schedule that produce a specific visual effect. This is fired at cone 10R. It is made from a buff stoneware, Plainsman H550, and has L3954N black engobe on the inside and part way down the outside. The transparent glaze on the inside gives the black a deep vibrant effect. The outside glaze is G2571A with 3.5% rutile and 10% zircopax added (the latter imparts opacity and the former produces the variegated surface). The powerful color of the black engobe wants to get through but it is only able to do so where the glaze layer is thinner (producing the varied shades of brown with differing thicknesses of glaze that occur because of the presence of the incised design).

The rutile mechanism in glazes


2, 3, 4, 5% rutile added to an 80:20 mix of Alberta Slip:Frit 3134 at cone 6. This variegating mechanism of rutile is well-known among potters. Rutile can be added to many glazes to variegate existing color and opacification. If more rutile is added the surface turns an ugly yellow in a mass of titanium crystals.

How can you make Ravenscrag Floating Blue dance more?


Here it is fired to cone 8 where the melt obviously has much more fluidity! The photo does not do justice to the variegation and crystallization happening on this surface. Of course it is running alot more, so caution will be needed.

Variegation and phase separation with about 5% rutile


The glaze is a dolomite matte fired to cone 10R. High fire reduction is among the best processes to exploit the variegating magic of rutile.

Boron blue in low fire transparent glazes


This high boron cone 04 glaze is generating calcium-borate crystals during cool down (called boron-blue). This is a common problem and a reason to control the boron levels in transparent glazes; use just enough to melt it well. If more melt fluidity is needed, decrease the percentage of CaO. There is a positive: For opaque glazes, this effect can actually enable the use of less opacifier.

An iron red cone 6 reactive glaze up close


Iron red cone 6 glaze up close

G3948A is a cone 6 iron red. This sample is firing using the C6DHSC schedule. It is a reactive glaze in more ways than one. This closeup reveals just how much is happening on that fired surface. The recipe contains spodumene, an expensive material, but clearly it is worth it.

High melt fluidity is required to achieve the visual effect of this glaze


A runny pottery glaze

This is G3948A, an iron red cone 6 reactive glaze (similar to several commercially available products). The reason for the variegated surface is the high fluidity of the melt. Adequate thickness is also important, enabling it to run downward to some extent. That means this is not actually over-fired. Using it thus requires consideration of the running behavior, accommodating it in the shape of the ware on which it is used. Obviously, using this on the insides of pieces would result in pooling at the base, which would likely produce glaze compression, cracking the piece during cooling. Use on the outsides may require a catch glaze.

In pursuit of a reactive cone 6 base that I can live with


These GLFL tests and GBMF tests for melt-flow compare 6 unconventionally fluxed glazes with a traditional cone 6 moderately boron fluxed (+soda/calcia/magnesia) base (far left Plainsman G2926B). The objective is to achieve higher melt fluidity for a more brilliant surface and for more reactive response with colorant and variegator additions (with awareness of downsides of this). Classified by most active fluxes they are:
G3814 - Moderate zinc, no boron
G2938 - High-soda+lithia+strontium
G3808 - High boron+soda (Gerstley Borate based)
G3808A - 3808 chemistry sourced from frits
G3813 - Boron+zinc+lithia
G3806B - Soda+zinc+strontium+boron (mixed oxide effect)
This series of tests was done to choose a recipe, that while more fluid, will have a minimum of the problems associated with such (e.g. crazing, blistering, low run volatility, susceptibility to leaching). As a final step the recipe will be adjusted as needed. We eventually evolved the G3806B, after many iterations settled on G3806E or G3806F as best for now.

Cone 6 oil-spot glaze effect, what works and does not work?


Cone 6 glazed tiles of white-on-black oil spot glazes

Simulating a white-on-black oil-spot effect at cone 6 oxidation proved to be a matter of repeated testing (that got me past some misconceptions). Stopping to think about the results at each step and keeping a good audit trail with pictures, in my account at insight-live.com, really helped. I had three black glazes: G2934BL satin (G2934 with black stain), G2926BB super-gloss (G2926B with black stain) and G3914A Alberta Slip black. Going on a hunch, I mixed up a bucket of the G3914A first (with some gum to help it survive second-coating without lifting). Rather than just try any white, I created G3912A by substituting as much CaO and MgO as possible for SrO in the G2934Y base. I later learned this to be an error, SrO reduces the surface tension, I should have used MgO (the G2934Y is a high-MgO glaze so it would have been fine as-is)! As you can see on the far right, this white still worked (at cone 5, 6, 7, 8). Why? There is another factor even more important. The effect only works on the Alberta Slip black. But its LOI is not higher than the others. And it worked even after ball milling. So I need to continue to work on this to learn more about why this works.

Inbound Photo Links



Cone 6 black with a second layer of oatmeal glaze


An example of variegation on a tile surface that occurred when using raw manganese dioxide


Cone 10 Reduction, the home of an amazing oxide: Iron

Pure titanium as a varieagant
Variegating effect of sprayed-on layer of titanium dioxide


Variegation gone too far!

The same glaze on black stoneware and porcelain
Same high-iron glaze on black stoneware and white porcelain

Links

Glossary Phase Separation
Phase separation is a phenomenon that occurs in transparent ceramic glazes. Discontinuities in the internal glass matrix affect clarity and color.
Glossary Matte Glaze
Random material mixes that melt well overwhelmingly want to be glossy, creating a matte glaze that is also functional is not an easy task.
Glossary Base Glaze
Understand your a glaze and learn how to adjust and improve it. Build others from that. We have bases for low, medium and high fire.
Glossary Variegation
Ceramic glaze variegation refers to its visual character. This is an overview of the various mechanisms to make glazes dance with color, crystals, highlights, speckles, rivulets, etc.
Glossary Ceramic Glaze
Ceramic glazes are glasses that have been adjusted to work on and with the clay body they are applied to.
Glossary Melt Fluidity
Ceramic glazes melt and flow according to their chemistry, particle size and mineralogy. Observing and measuring the nature and amount of flow is important in understanding them.
Glossary Fluid Melt Glazes
Fluid melt glazes and over-melting, over fired, to the point that they run down off ware. This feature enables the development of super-floss and cyrstallization.
Materials Rutile
A raw TiO2-containing mineral used in ceramics to color and variegate glaze surfaces.
Properties Glaze Variegation
Recipes GA6-C - Alberta Slip Floating Blue Cone 6
Plainsman Cone 6 Alberta Slip based glaze the fires bright blue but with zero cobalt.
Recipes GR6-M - Ravenscrag Cone 6 Floating Blue
Plainsman Cone 6 Ravenscrag Slip based version of the popular floating blue recipe.
Articles Where do I start in understanding glazes?
Break your addiction to online recipes that don't work or bottled expensive glazes. Learn why glazes fire as they do. Why each material is used. How to create perfect dipping and drying properties. Even some chemistry.
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk

 



https://digitalfire.com, All Rights Reserved
Privacy Policy