325 mesh | 3D Design | 3D Printer | 3D Slicer | 3D-Printed Clay | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Coring | Bleeding colors | Blisters | Bloating | Blunging | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brushing Glaze | Buff stoneware | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Celadon Glaze | Ceramic | Ceramic Binder | | Ceramic Glaze | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Cone 1 | Cone plaque | Cones | Copper Red | Cordierite Ceramics | Crackle glaze | Crawling | Crazing | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | De-Airing Pugmill | Decomposition | Deflocculation | Deoxylidration | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stains | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Durability | Glaze fit | Glaze Gelling | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | Handles | High Temperature Glaze | Hot Pressing | Incised decoration | Ink Jet Printing | Inside-only Glazing | Insight-Live | Interface | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Lime Popping | Limit Formula | Limit Recipe | Liner Glaze | LOI | Low Temperature Glaze Recipes | Lustre Colors | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medalta Potteries, Medalta Stoneware | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metallic Glazes | Micro Organisms | Microwave Safe | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | PCE | Permeability | Phase change | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Precipitation | Primary Clay | Primitive Firing | Production Setup | Propane | Propeller Mixer | Pyroceramics | Pyroceramics | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Respirable Crystalline Silica | Rheology | Rutile Glaze | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Shivering | Sieve | Silica:Alumina Ratio (SiO2:Al2O3) | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Tony Hansen | Toxicity | Tranlucency | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Viscosity | Vitreous | Vitrification | Volatiles | Warping | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zeta Potential

Ceramic Decals

This process is done by printing a design (using ceramic inks) onto a film coated decal paper, drying it, then transferring the film to the fired ware. But beware of problems.


A method of printing designs (using ceramic inks) onto a transparent film, then transferring that to glazed ware. The film has a glue that holds it to a heavy opaque paper backing coated with a glossy release layer. On wetting (for the correct amount of time), the glue loosens and enables the transfer. As the decal dries on the ware the glue holds it in place. When fired, the very think film backing material burns away leaving the ink to bond with the glaze surface. The film can accommodate quite a bit of irregularity in the contours of the surface.

The inks used in decals melt at a much lower temperature than typical glazes, around cone 022.
Decals can be printed directly in an inkjet printer (fitted with ceramic ink cartridges) or by silk screening (the latter transitioning to the former in recent years). The new technology has many obvious advantages. In fact manufacturers of ink formulations, mediums, silk screening, and ceramic waterslide decals have gone out of business in recent years and this has caused problems with companies who depend on them. Their formulations were lost in the process notwithstanding that silk screen decal process is still very useful. Are you an engineer who knows about these formulations. Would you be able to help to make these directly available to manufacturers? Please contact us.

The ink is a specialized formulation of nano-powdered frit (bismuth based) and stains, it forms a glassy color at very low temperatures. Very bright colors are possible. However, since the designs are on the glaze surface, they must endure the full forces of wear and tear to which the piece is exposed. Since these inks do not contain the stable silicates that a glaze does (because they need to melt so low), they are more subject to abrasion and degradation. However, there is a trade-off. Because the decal firing only goes to around 1600F very bright colors are possible and the underlying glaze usually does not melt enough to bleed their edges. This stable surface enables great precision of design, full color photos can thus be produced having a quality that rivals regular print.

Firing decals on large pieces can put you on a collision course with ware cracking resulting from stresses in passing up or down too fast through quartz or cristobalite inversions. It is a necessity to have a programable kiln controller to slow down through these periods.

There is a serious issue to think about if you are planning to introduce decals into your production: Many glazes are reactive fluid melters (high boron, zinc, lithium) and begin to soften at decal temperatures. These will often form pits, pinholes or even blisters during the firing on of the decal, ruining the piece. The higher you fire and the later the glaze melts the more you will avoid this serious problem. Even if it does not melt, the glaze may have a visual character (color or surface texture) that is a product of crystallization during cooling, these crystals could easy be affected during a decal firing.

Please visit http://ceramicdecals.org for much more information.

Related Information

Can a decal firing melt a glaze? Yes!

Typical zero-boron high temperature glazes will not soften in a 1500F decal firing. But low temperature glazes will (especially those high in boron). Even middle temperature ones can soften. G3806C, for example, is reactive and fluid, it certainly will. Even G2926B, which has high Al2O3 and SiO2, has enough boron to soften and sometimes create tiny pits. In serious cases they can bubble like the mug on the right. Why? Steam. It was in use and had been absorbing water in the months since it was first glaze fired at cone 03. The one on the left was not used, but it did have some time to absorb water from the air, it is showing tiny pits in the surface. Even if moisture is not present, low fire bodies especially may still have some gases of decomposition to affect the glaze. One more thing: Fire the decals at the recommended temperature, often cone 022.

Why has this platter has cracked in half during a decal firing?

Your ware is fairly thick. It was already vitrified in a previous firing. It now must climb and fall through quartz and cristobalite inversions during a decal firing. The firing schedule provided by the decal supplier ramps up very quickly. The result? A cracked piece.

Why did this piece came out of a decal firing crazed?

This Cone 10 matte mug has been refired to attach decals. During the refire the Quartz-containing body passed up through quartz and cristobalite inversions while the glaze did not (all of its quartz was converted to silicates during the previous glaze firing). The sudden expansion in these two zones stretched the glaze and cracked it. Had that glaze been better fitted (under some compression) it would have been able to survive.

What is that glossy square around the decal?

An example of a digital decal that has been fired at 1500F onto a matte cone 6 glaze. Notice the glossy, square around the graphic. This is where the decal paper was cut prior to transfer. This glossy layer appears by design, the decal paper has a thin layer of glaze and your inkjet design is printed, reverse reading, onto that. After transfer and firing that glaze thus insulates the color from coming into contact with anything that might leach it. It is thus wise to trim carefully around designs such that the glossy pattern does not detract from the appearance (as it does here). You can get decals without the glaze covering, but may not melt enough to be durable on the glaze surface.

Decal on a raw body surface

Fired in a standard decal firing. The glaze on the tile has helped fuse it to a glossy surface. Has worked well except for adhesion problems during application (because the porous body adsorbed all the water immediately). If the tile had been soaked previously it would have been better.


Glossary Silk screen printing
Silk screen printing is one of the best options for hobbyists and potters to reproduce crisp and detailed decoration for their ware. But there are many details to know.
Glossary Quartz Inversion
In ceramics, this refers to the sudden volume change in crystalline quartz particles experience as they pass up and down through 573C. Fired cracks are often related to this.
Glossary Cristobalite Inversion
In ceramics, cristobalite is a form (polymorph) of silica. During firing quartz particles in porcelain can convert to cristobalite. This has implications on the thermal expansion of the fired matrix.
Glossary Ink Jet Printing
Ink jet printed decoration is now pervasive in all parts of the ceramic industry. And in hobby also.
Glossary Ceramic Ink
You can make your own ink (or buy it) and apply it to ware using various methods (e.g. rubber stamping, silk screen, inkjet decals).
URLs http://ceramigraphics.com
CeramiGraphics website
URLs http://ceramicdecals.org
CeramicDecals.org a very detailed information site on everything decals

By Tony Hansen

Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved