Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Printer | 3D Slicer | 3D-Printed Clay | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Coring | Bleeding colors | Blender Mixing | Blisters | Bloating | Blunging | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Crawling | Crazing | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Ink Jet Printing | Inside-only Glazing | Insight-Live | Interface | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Lime Popping | Limit Formula | Limit Recipe | Liner Glaze | Liner glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Shivering | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Warping | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | | Wood Firing | Zero3 | Zero4 | Zeta Potential

Wood Ash Glaze

Common washed wood ash has a chemistry akin to a ceramic glaze, so it can comprise significant percentages in a recipe. Plus it can produce unique visual effects.

Key phrases linking here: wood ash glazes, wood ash glaze, ash glazes, ash glaze - Learn more


A glaze that employs organic ash (e.g. paper, wood) as a supplier of basic oxides (especially CaO, K2O, Na2O). Ashes are generally flaky and fibrous and cannot be screened well, this consistency contributes to variegation in the color and texture of the fired surface. Without large batches of consistent ash to draw on repeatability is poor, so this type of glaze is only suitable for potters.

Many pottery books and websites deal with the preparation (washing) of wood ash. It can be difficult to separate the ash from the unburned material so it may be necessary to calcine or even ball mill it. Most practitioners consider ash glazes decorative and do not use them on functional ware, they thus are prepared to tolerate poor working properties and inconsistent results. However, our approach is to use enough ash to get an earthy appearance but not so much that a glaze is no longer functional or easily usable.

Many recipes online call for "wood ash". But there is a problem with this. The chemistry of different organic ash types varies dramatically. But also for different batches of the same wood. And, more often than not, the type of wood is not even known. Or, it is a mix. If a recipe only calls for a small percentage of wood ash (e.g. less than 10%) this might not be a problem. But for larger percentages, the chances of your recipe firing the same as the pictures shown is very low.

There is a completely different approach: Develop your own recipe using the highest practical percentage of ash. To do this, accumulate a large batch (e.g. 20 lbs), mix it well and then do blending experiments with kaolin, feldspar and silica. The higher the ash percentage the thicker the slurry will be and the more water it will require (and the more the problem with drying shrinkage and cracking). It is thus best to employ plenty of kaolin to help with slurry rheology. Adding CMC gum can also help with adherence and drying issues.

All of the pieces shown here were made by Tony Hansen, they demonstrate what is possible in formulating your own ash glaze recipe. This can be a very rewarding experience, especially when you learn to recognize what material(s) need to be added or substituted to improve the appearance or performance.

Many potters employ fake ash glazes, these are formulated to emulate the appearance of an ash glaze without the hassles of actually using it. These gazes typically are active melters and form a fine crystal mesh (which can require a long cooling period in the kiln, up to 24 hours).

Related Information

How to create a wood ash glaze

Tap picture for full size and resolution

It makes sense to maximize the percentage of wood ash. This glaze was the product of preparing a large ash batch and a project to develop a glaze specifically from it. This one contains a little iron to brown it. Ash generally contains low percentages of Al2O3, a critical oxide needed for stable glass development. I added kaolin (about 20%), it suspends the slurry and supplies Al2O3. Ashes contain lots of fluxing oxides, but they still may need a little help to melt a glaze at cone 6, so I added feldspar (it also supplies more needed Al2O3). For better melting add some borax frit (like Ferro frit 3195). If crazing occurs use frit 3249 instead. Use whatever feldspar and kaolin you have.

Plainsman M332 vase with a wood ash glaze fired at cone 6.

Tap picture for full size and resolution
Wood ash glazed vase

The pattern was painted using wax resist and the glaze was applied by pouring. This recipe was the product of multiple previous versions and experience in learning how to process the ash to a finer particle size. The ash was just from the burning of paper and cardboard in our office many years ago. This glaze melted to such a good surface that it was suitable for functional ware. These glazes were among my earliest successes in formulating glazes and hundreds of pieces grew from this. M332 is a coarse-particled clay body and most glazes pinhole on it. Yet these ash glazes produced defect-free surfaces (albeit with plenty of variegation from the impurities intrinsic to the material).

Cone 6 oxidation wood ash glazed vase

Tap picture for full size and resolution

I always put the emphasis on ash glazes with functional surfaces, well melted, uncrazed and resistant to staining or cutlery marking. This version gets its color only from rutile. The glaze creates a more decorative surface when applied thinner (like the inside of this small vase). When thicker the surface is functional (like the outside surface). Ash glazes can be very stable (resistant to running during firing) if they contain enough Al2O3 (mainly from the kaolin) but also from the feldspar.

Wood ash glazed cone 6 bowl

Tap picture for full size and resolution

This ash glaze contains no iron but does have a little cobalt (e.g. 0.25%). The ash is about 50%, with 20% EP kaolin and 25% Custer feldspar and a little rutile (2-4%). If your attempted glaze does not melt well enough consider substituting some of the feldspar for Gerstley Borate or a low melting low expansion frit. If it melts too much add a little silica at the expense of the feldspar.

Cone 8 oxidation wood ash glazed planter

Tap picture for full size and resolution

H463 with a wood ash glaze. This ash glaze version was just the cone 6 version (referred to elsewhere on this page) fired to cone 8. The higher temperature produced much more variegation in this rutile and cobalt version of the recipe. A thicker application on the outside caused cracking during drying, that produced crawling that added to the aesthetic. By Tony Hansen.

Inbound Photo Links

Pottery made from cremation ash, increasingly popular!


Media Desktop Insight 4 - Add a Native Material to MDT, Build a Glaze
Learn to add a native volcanic ash to the INSIGHT materials database (MDT) and then create a glaze from it maximizing its percentage. Learn to impose an LOI on a material and why this method is better than line blending.
Materials Rice Straw Ash
A type of plant ash sometimes used as an ingredient in pottery glazes.
Materials Rice Husk Ash
A type of plant ash used as an ingredient in pottery glazes.
Materials Pine Wood Ash
A type of wood ash used as an ingredient in pottery glazes.
Materials Oakwood Ash
A type of wood ash used as an ingredient in pottery glazes.
Materials Hardwood Ash
A type of wood ash used as an ingredient in pottery glazes.
Materials Eucalyptus Ash
A type of wood ash used as an ingredient in pottery glazes.
Materials Applewood Ash
A type of wood ash used as an ingredient in pottery glazes.
Materials Wood Ash
Materials Volcanic Ash
Powdered volcanic ash is used to make ceramic glazes, some varieties have a chemistry similar enough to glaze that high percentages can be employed.
Materials Soft Wood Ash
A type of wood ash used as an ingredient in pottery glazes.
Glossary Ceramic Glaze
Ceramic glazes are glasses that have been adjusted to work on and with the clay body they are applied to.
Hazards Plant Ash Toxicity
The hazards of using plant and wood ash in ceramic glazes
Articles Chemistry vs. Matrix Blending to Create Glazes from Native Materials
Is it better to do trial and error line and matrix blending of materials to formulate your glazes or is it better to use glaze chemistry?
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk, All Rights Reserved
Privacy Policy