3D Design | 3D Printer | 3D Slicer | 3D-Printed Clay | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Coring | Bleeding colors | Blisters | Bloating | Blunging | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brushing Glaze | Buff stoneware | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Cone plaque | Cones | Copper Red | Cordierite Ceramics | Crackle glaze | Crawling | Crazing | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | De-Airing Pugmill | Decomposition | Deflocculation | Deoxylidration | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stains | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Durability | Glaze fit | Glaze Gelling | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | Handles | High Temperature Glaze | Hot Pressing | Incised decoration | Ink Jet Printing | Inside-only Glazing | Insight-Live | Interface | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Lime Popping | Limit Formula | Limit Recipe | Liner Glaze | LOI | Low Temperature Glaze Recipes | Lustre Colors | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metallic Glazes | Micro Organisms | Microwave Safe | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | PCE | Permeability | Phase change | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Precipitation | Primary Clay | Primitive Firing | Production Setup | Propane | Propeller Mixer | Pyroceramics | Pyroceramics | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refractory | Refractory Ceramic Coatings | Representative Sample | Respirable Crystalline Silica | Rheology | Rutile Glaze | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Shivering | Sieve | Silica:Alumina Ratio (SiO2:Al2O3) | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Tony Hansen | Toxicity | Tranlucency | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Viscosity | Vitrification | Volatiles | Warping | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zeta Potential

Dunting

Dunting generally refers to cracking that occurs in ceramic ware as it is cooled in the kiln. The reasons for that cracking can be many.

Details

Dunting is cracking associated with too rapid a cool-down of the kiln. Dunting often exhibits itself as simple hairline cracks, but ware can fracture into pieces.

More specifically, a body recipe may create a ceramic that is unable to withstand reasonable cooling shock (e.g. have too much silica and too little feldspar to produce a vitreous body with reasonable mullite development). Or ware may have a poorly fitting glaze that creates stresses and places for cracks to propagate. Ware of uneven cross section or larger pieces cannot withstand quick cooling nearly as well. Quartz and cristobalite inversions are the most sensitive periods of cooling, especially for ware of uneven cross section or where the kiln is not heating ware evenly. A worst case scenario is a large flat plate made from a high silica non-vitreous porcelain, covered with a crazing glaze on the outside and excessively compressed one on the inside, having a thin lip and a thick base, fit tightly into an electric kiln with the lip close to the elements and cooled quickly through quartz inversion.

Related Information

A dunting crack

Example of a dunting crack in a flat deep cone 6 porcelain bowl. The bowl has a wide bottom that heat-sinks to the shelf, so during firing there is a temperature gradient between the walls and the base. That difference in temperature translates to stress because it means that different parts of the piece are experiencing different thermal contractions as it cools in the kiln.

Can a glaze crack a plate? Yes.

This is a thin slip-cast plate made from a high-silica (therefore high thermal expansion) clay and a thick layer of low thermal expansion glaze. During the cooling in the kiln the clay shrinks and the glaze shrinks less. This puts the latter under compression, and the body under tension. A ceramic does not do well under tension. A week after firing the piece spontaneously cracked to relieve the tension.

An example of dunting on a low, flat casserole shape

A crack has released the stresses produced by uneven thermal contraction during cool-down in the kiln. This usually happens by cooling too quickly through quartz inversion.

An unevenly cooled tile has cracked

Example of a severely dunted cone 6 stoneware tile. This problem was deliberately created by stacking several tiles on top of this one. This set up a temperature gradient across it so that different parts passed through quartz inversion at different times.

Low fire ware cracking during firing. Why?

Most low-fire bodies contain talc. It is added for the express purpose of increasing thermal expansion. The natural quartz particles present do the same. These are good for glaze fit but bad for ware like this. There are also sudden volume changes associated with cristobalite, but it forms (from quartz) at stoneware temperatures so should not be a concern in terra cotta. You could fiddle with the clay recipe or change bodies, but better to change the firing schedule. While stoneware dunting happens between 950-1150F on the way down, this could be happening anywhere. A simple fix is to slow down the entire cooling cycle. Learn to program your kiln. Use a conservative cooling rate of about 200F/hr (even slower at 1150-950F). No electronic controller? Learn a switch-setting-schedule to approximate this down-ramp (buy a pyrometer if needed).

Links

Materials Silica Sand
Glossary Thermal shock
When sudden changes in temperature cause dimensional changes ceramics often fail because of their brittle nature. Yet some ceramics are highly resistant.
Glossary Quartz Inversion
In ceramics, this refers to the sudden volume change in crystalline quartz particles experience as they pass up and down through 573C. Fired cracks are often related to this.

By Tony Hansen


Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address

Name

Subject

Message


Upload picture


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved