325 mesh | 3D Design | 3D Printer | 3D Slicer | 3D-Printed Clay | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Coring | Bleeding colors | Blisters | Bloating | Blunging | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brushing Glaze | Buff stoneware | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Cone 1 | Cone plaque | Cones | Copper Red | Cordierite Ceramics | Crackle glaze | Crawling | Crazing | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | De-Airing Pugmill | Decomposition | Deflocculation | Deoxylidration | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stains | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Durability | Glaze fit | Glaze Gelling | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | Handles | High Temperature Glaze | Hot Pressing | Incised decoration | Ink Jet Printing | Inside-only Glazing | Insight-Live | Interface | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Lime Popping | Limit Formula | Limit Recipe | Liner Glaze | LOI | Low Temperature Glaze Recipes | Lustre Colors | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medalta Potteries, Medalta Stoneware | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metallic Glazes | Micro Organisms | Microwave Safe | | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | PCE | Permeability | Phase change | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Precipitation | Primary Clay | Primitive Firing | Production Setup | Propane | Propeller Mixer | Pyroceramics | Pyroceramics | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Respirable Crystalline Silica | Rheology | Rutile Glaze | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Shivering | Sieve | Silica:Alumina Ratio (SiO2:Al2O3) | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Tony Hansen | Toxicity | Tranlucency | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Viscosity | Vitreous | Vitrification | Volatiles | Warping | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zeta Potential

Mineralogy

Raw ceramic materials are minerals or mixtures of minerals. By taking the characteristics of these into account technicians can rationalize the application of glaze chemistry.

Details

In contrast to man-made materials (like frits), ceramic minerals have a highly ordered atomic structure and a specific range of crystalline manifestations. By taking the characteristics of these into account technicians can rationalize the application of glaze chemistry when recipes are mixtures of minerals and man-made materials.

Minerals are complex, their properties are a product of their crystal structure (even the tiny particles in the powdered form are crystalline). A given chemistry can exhibit itself in more than one mineral form, each having its own crystalline structure and physical properties. Minerals can have phases or different crystalline forms and these can be converted one to another by the application of specific heating and cooling curves and exist between specific temperatures (thus certain mineral may only exist during a firing, you will never be able to hold them in your hand). The most common mineral is quartz, it can exist in a variety of forms (e.g. tridymite, cristobalite). Mica and mullite are good examples of materials used in ceramics exclusively for their mineralogy, not their chemistry. Many ceramic minerals are silicates. Minerals have specific melting temperatures and well defined events in their thermal decomposition history. Materials are mixtures of minerals and material powders are mixtures of microscopic mineral particles.

Understanding that quartz mineral and silica glass have vastly different physical properties is often the beginnings of understanding the relationship between the mineralogy of the materials we use and their chemistry. Fused silica, for example, is one of the lowest thermal expansion materials available (0.2% at 2000F). Some industries, for example, use fused silica slabs weighing more than a ton as valves in large pipes where temperatures are not only high but suddenly change, yet these slabs do not crack. These slabs operate continuously at high temperatures, however at plant shut down when they are cooled they crystallize and must be discarded! Quartz, on the other hand, is one of the least thermal-expansion-tolerant minerals (1.5% at 2000F) and even thin sections crack very easily on sudden temperature changes. Yet both have the same SiO2 chemistry.

Understanding minerals also involves understanding how CO2 and H2O incorporate into the crystal structure of so many minerals and how to adapt a firing process withstand expulsion or how to process the mineral to take these out and store it to keep them out.

A good example of where a potter needs to consider mineralogy is when he is formulating a clay based engobe to apply over earthenware or low fire stoneware. The amount of quartz mineral in the body and slip needs to match fairly closely to minimize chances of the slip-body bond being compromised as the piece is cooled through quartz inversion. He also can utilize a mix of calcined and raw kaolins (two different mineral forms of the same material) to control the shrinkage properties of the slip while maintaining the fired character.

More technical definition from Richard Willis: The crystallized aggregates of atomic elements, morphologically distinguishable by 32 possible geometrical shapes (symmetry elements and their combinations) which in turn can be grouped into six crystal systems according to the complexity of their symmetries: isometric, hexagonal, tetragonal, orthorhombic, monoclinic, and triclinic. The aggregates (elements combined forming a given mineral) are determined by chemical bonding, which can occur electrostatically, electron-sharing, metallicazation, or residualization. Bonding effects hardness, density, solubility, melting point, tenacity, specific gravity, magnetism, structural properties, colors, etc. Subsequently, minerals can be classified into 11 groups according to chemical and physical properties: native elements, sulfides, sulfosalts, oxides and hydroxides, halides, carbonates, nitrates, borates, sulfates, phosphates, and silicates.

Related Information

Compare fired glaze melt fluidity balls with their chemistry and lights come on!

10 grams GBMF test balls of these three glazes were fired to cone 6 on porcelain tiles. Notice the difference in the degree of melt? Why? You could just say glaze 2 has more frit and feldspar. But we can dig deeper. Compare the yellow and blue numbers: Glaze 2 and 3 have much more B2O3 (boron, the key flux for cone 6 glazes) and lower SiO2 (silica, it is refractory). That is a better explanation for the much greater melting. But notice that glaze 2 and 3 have the same chemistry, but 3 is melting more? Why? Because of the mineralogy of Gerstley Borate. It yields its boron earlier in the firing, getting the melting started sooner. Notice it also stains the glaze amber, it is not as pure as the frit. Notice the calculated thermal expansion: That greater melting came at a cost, the thermal expansion is alot higher so 2 and 3 glaze will be more likely to craze than G2926B (number 1).

When both mineralogy and chemistry are shown on a data sheet

Some material data sheets show both the oxide and mineralogical analyses. Dolomite, for example, is composed of calcium carbonate and magnesium carbonate minerals, these can be separated mechanically. Although this material participates in the glaze melt to source the MgO and CaO (which are oxides), it's mineralogy (the calcium and magnesium carbonates) specifically accounts for the unique way it decomposes and melts.

Links

URLs http://en.wikipedia.org/wiki/List_of_minerals
List of Minerals at Wikipedia
URLs http://www.olympusmicro.com/galleries/polarizedlight/pages/rocksindex.html
Polarized Light Microscopy Gallery
URLs http://www.minersoc.org/pages/gallery/claypix/index.html
Mineral SEM gallery page at The Mineralogical Society website
URLs http://en.wikipedia.org/wiki/Mineral
Mineral at Wikipedia
URLs http://en.wikipedia.org/wiki/Minerals
Minerals at Wikipedia
Glossary Ceramic Oxide
In glaze chemistry, the oxide is the basic unit of formulas and analyses. Knowledge of what materials supply an oxide and of how it affects the fired glass or glaze is a key to control.
Glossary Water in Ceramics
Water is the most important ceramic material, it is present every body, glaze or engobe and either the enabler or a participant in almost every ceramic process and phenomena.
Glossary Glass vs. Crystalline
In ceramics, understanding the difference between what a glass and crystal are provides the basis for understanding the physical presence of glazes and clay bodies.
Tests Trace Minerals
Projects Minerals
Minerals Quartz
Materials Mullite
Materials Mica
Materials Calcined Kaolin

By Tony Hansen


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved