3D Design | 3D Printer | 3D Slicer | 3D-Printed Clay | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | Alkali | Alkaline Earths | Amorphous | Analysis | Apparent porosity | Bacteria, Mold on Clay | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glazes | Basic Oxides | Batch Recipe | Binder | Bisque, bisquit firing | Bit Image | Black Coring | Bleeding colors | Blisters | Bloating | Blunging | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brushing Glazes | Buff stoneware | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Celadon Glaze | Ceramic | Ceramic Decals | Ceramic Glaze | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Tile | Ceramics | Characterization | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Cone plaque | Copper Red | Cordierite Ceramics | Corning Ware, Pyroceramics, Pyrex | Crackle glaze | Crank, plate setter | Crawling | Crazing | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | De-Airing Pugmill | Decomposition | Deflocculation | Deoxylidration | Digitalfire Foresight | Digitalfire Insight | Digitalfire Insight-Live | Dimpled glaze | Dimpling, Orange Peel | Dip Glazing | Dipping Glazes | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stains | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Firebrick | Fireclay | Fired Strength | Firing | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Durability | Glaze fit | Glaze Gelling | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | Handles | High Temperature Glaze | Hot Pressing | Incised decoration | Ink Jet Printing | Inside-only Glazing | Interface | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln fumes | Kiln venting system | Kiln Wash | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Lime Popping | Limit Recipe | Liner Glaze | LOI | Low Temperature Glaze Recipes | Lustre Colors | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metallic Glazes | Microwave Safe | Mineralogy | Mocha glazes | Mole% | Monocottura, Monoporosa | Mosaic Tile | Mottled | Mullite Crystals | Non Oxide Ceramics | Normalization | Oil-spot glaze | Once fire glazing | Opacifier, Opacification | Opacity | Orton Cones | Ovenware | Overglaze | Oxidation Firing | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | PCE | Permeability | Phase Diagram | Phase Separation | Phase, phase changes | Physical Testing | Pinholing | Plasticine | Plasticity | Plucking | Porcelain | Pour Glazing | Precipitation | Primary Clay | Primitive Firing | Production Setup | Propane | Propeller Mixer | Pyroceramics | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refractory | Refractory Ceramic Coatings | Representative Sample | Respirable Crystalline Silica | Rheology | Rutile Glaze | Salt, soda firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Shivering | Sieve | Silica:Alumina Ratio (SiO2:Al2O3) | Silk screen printing | Sinter, sintering | Slake, Slaking | Slip Casting | Slip Trailing | Soaking | Soluble Colors, Sulfate Colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain | Stoneware | Stull Chart | Sulfate Scum | Sulfates, Sulphates | Surface Area | Surface Tension | Suspension | Tapper Clay | Target Formula, Limit Formula | Tenmoku | Terra cotta | Terra Sigilatta | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple, pyrometer | Thixotropy | Tony Hansen | Toxicity | Tranlucency | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Vaporization | Viscosity | Vitrification | Volatiles | Warping | Water in Ceramics | Water Smoking | Water Solubility | Wedging, kneading | Wheel Bat | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zeta Potential

MDT

An acronym for Materials Definition Table. The XML materials database of Digitalfire Insight glaze chemistry software.

Details

MDT is an acronym for Materials Definition Table. It is the materials database of Digitalfire Insight glaze chemistry software. It is called a table because Insight reads it into memory from an XML file at program startup and forms and internal data structure of material rows and oxide columns. It references these when calculating the oxide chemistry of recipes. The MDT stores material chemistry as formulas and formula weights. It does not matter whether the formulas are unified or not as stored in the table, Insight just needs to know the proportions of oxides numbers.

The Digitalfire Reference library has the ability to export a subset of its materials as an MDT file. This enables users to login and start with a general list (e.g. North America, Europe) and then add specific materials as needed. They can then download the collection as an MDT file and put that file in the Insight folder in the documents folder on their computer (where desktop Insight will see it the next time it starts up).

The XML text format of the MDT file is the product of evolution over the years. Earlier formats listed materials and oxides/amounts on separate lines without identifying tags. XML is a very flexible format that can embody relational and hierarchical structures along with attributes (you can open an MDT file using your text editor or word processor to see what the format looks like). Since most people do not need more than a couple of hundred materials in their library, materials never needed to be stored in a database, the text format was faster and more flexible.

Digitalfire Insight materials dialog window

Digitalfire Insight materials dialog window

Desktop Insight remembers materials (in its database) as formulas and their formula weights. From this it can calculate the LOI. Materials can have alternate names so they are more likely to be found in calculating recipes. This dialog provides tools for adding, editing, deleting, importing and exporting materials.

Desktop INSIGHT MDT dialog showing kaolin LOI

Desktop INSIGHT MDT dialog showing kaolin LOI

The LOI appears below the material name and alternative names (beside the weight). The formula that goes with that LOI is the bold numbers in the blanks beside the oxide names on the right.

Links

Media Desktop Insight 4 - Add a Native Material to MDT, Build a Glaze
Media Desktop Insight: Maintain an MDT as a CSV File in Excel
Media Desktop Insight MDT: Adding a Material
Glossary Digitalfire Insight
A downloadable program for Windows, Mac, Linux for doing classic ceramic glaze chemistry. It has been used around the world since the early 1980s.

By Tony Hansen


Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address

Name

Subject

Message


Upload picture


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved