Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Modeling | 3D Printer | 3D Printing Clay | 3D Slicer | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI in Ceramics | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire API | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Digitalfire Taxonomy | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Displacer | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Infill | Ink Jet Printing | Inside-only Glazing | Insight-Live | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner Glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mold Natches | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Pour Spout | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Side Rails | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water Content | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | WooCommerce | Wood Ash Glaze | Wood Firing | WordPress | Zero3 | Zero4 | Zeta Potential

Oil-spot glaze

A mottled glaze created by double-layering glazes of different melt fluidity and color

Key phrases linking here: oil-spot glaze - Learn more

Details

Officially, the oil-spot variegation effect appears to be the product of bubble generation associated with the release of gases of decomposition associated with an iron oxide phase change near the climax of a high temperature (cone 8+) firing cycle. The effect appears to be accompanied by the precipitation and crystallization of iron during cooling. Some also call it "lizard skin". Peter Hessemer explains it like this: "I believe traditional oil-spot glazes occur because the iron-rich... Albany slip glazes bubble naturally. The skin of the bubbles oxidizes and then lays down on the surface again creating the oi-spots."

However, the oil-spot effect could theoretically be created at any temperature with any color if a decomposition process exists for one of the materials present (or an interaction). The bubbles could be employed to deliver a contrasting color from an underlying glaze layer. Another glaze double-layering method is to employ melts of different fluidity (and contrasting colors). Typically the base glaze is melt-fluid and the overglaze is a lighter non-fluid glaze (typically a matte). The underglaze breaks through and isolates islands of the upper glaze to create the effect. Vertical and horizontal surfaces display the effect differently. The relative thickness of the glazes can be tuned to optimize the aesthetic. More subtle effects can be created by using glazes of the same color but different surface character. With this mechanism, it appears logical to tune the chemistry of the overglaze to have a higher surface tension than the lower one.

In our experimentation, we have found that tin oxide, in higher percentages (e.g. 6%), bubbles a high-surface-tension base transparent (high SrO content). Thus, over a black, the surface activity created by the bubbling creates a variegated pattern and texture of black and white.

Related Information

Closeup of oil spot glaze at cone 8


The lower black glaze is a base coat G3914A Alberta Slip base (with 4% Mason 6600 stain). The white overglaze is G3912A with tin oxide opacifier, it was specially made for this purpose. Normally I would fire this combination at cone 6, but this time I tried cone 8. It is a little high for this clay body, but the glaze variegation is better.

Cone 6 oil-spot glaze effect, what works and does not work?


Cone 6 glazed tiles of white-on-black oil spot glazes

Simulating a white-on-black oil-spot effect at cone 6 oxidation proved to be a matter of repeated testing (that got me past some misconceptions). Stopping to think about the results at each step and keeping a good audit trail with pictures, in my account at insight-live.com, really helped. I had three black glazes: G2934BL satin (G2934 with black stain), G2926BB super-gloss (G2926B with black stain) and G3914A Alberta Slip black. Going on a hunch, I mixed up a bucket of the G3914A first (with some gum to help it survive second-coating without lifting). Rather than just try any white, I created G3912A by substituting as much CaO and MgO as possible for SrO in the G2934Y base. I later learned this to be an error, SrO reduces the surface tension, I should have used MgO (the G2934Y is a high-MgO glaze so it would have been fine as-is)! As you can see on the far right, this white still worked (at cone 5, 6, 7, 8). Why? There is another factor even more important. The effect only works on the Alberta Slip black. But its LOI is not higher than the others. And it worked even after ball milling. So I need to continue to work on this to learn more about why this works.

Ravenscrag oatmeal layered over black at cone 6


This is GR6-H Ravenscrag Slip oatmeal over G1214M black on porcelain at cone 6 oxidation to create an oil-spot effect. Both were dipped quickly.

Variegation gone too far!


This is Ravenscrag Slip Oatmeal layered over a 5% Mason 6666 stained glossy clear at cone 6. You have to be careful not to get the overglaze on too thick, I did a complete dip using dipping tongs, maybe 2 seconds. Have to get it thinner so a quick upside-down plunge glazing only the outside is the the best way I think. You may have to use a calcined:raw mix of Ravenscrag for this double layer effect to work without cracking on drying.

Alberta Slip black with 4% stain at cone 6


Making black using metal oxides normally involves cobalt oxide, manganese dioxide, copper oxide and iron oxide. Combined they typically comprise 10-15% of the recipe. Using the Alberta Slip GA6-B base recipe, only 4% Mason 6600 black stain is needed to get a jet black! These blacks were applied in varying thickness on a porcelain and buff stoneware before having the white second layer applied. The black glaze on the top-right tile only has 3% stain. The overglaze is a gloss white with increasing amounts of tin oxide added (4-7%). Beyond 5% there appears to be no advantage.

Links

URLs http://ceramicstoday.glazy.org/articles/oilspot.html
Oil Spot Glazes by John Brit
Media Creating a Cone 6 Oil-Spot Overglaze Effect
In this video I use my Insight-live account to do the chemistry to convert an existing MgO-matt glaze into a tin-opacified, high-surface-tension melt for double-layering over a gloss black. I also use it to record my physical testing.
Glossary Ceramic Glaze
Ceramic glazes are glasses that have been adjusted to work on and with the clay body they are applied to.
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk

 



https://digitalfire.com, All Rights Reserved
Privacy Policy