3D Design | 3D Printer | | 3D-Printed Clay | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | Alkali | Alkaline Earths | Amorphous | Analysis | Apparent porosity | Bacteria, Mold on Clay | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glazes | Basic Oxides | Batch Recipe | Binder | Bisque, bisquit firing | Bit Image | Black Coring | Bleeding colors | Blisters | Bloating | Blunging | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brushing Glazes | Buff stoneware | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Celadon Glaze | Ceramic | Ceramic Decals | Ceramic Glaze | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Tile | Ceramics | Characterization | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Cone plaque | Copper Red | Cordierite Ceramics | Corning Ware, Pyroceramics, Pyrex | Crackle glaze | Crank, plate setter | Crawling | Crazing | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | De-Airing Pugmill | Decomposition | Deflocculation | Deoxylidration | Digitalfire Foresight | Digitalfire Insight | Digitalfire Insight-Live | Dimpled glaze | Dimpling, Orange Peel | Dip Glazing | Dipping Glazes | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stains | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Firebrick | Fireclay | Fired Strength | Firing | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Durability | Glaze fit | Glaze Gelling | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | Handles | High Temperature Glaze | Hot Pressing | Incised decoration | Ink Jet Printing | Inside-only Glazing | Interface | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln fumes | Kiln venting system | Kiln Wash | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Lime Popping | Limit Recipe | Liner Glaze | LOI | Low Temperature Glaze Recipes | Lustre Colors | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metallic Glazes | Microwave Safe | Mineralogy | Mocha glazes | Mole% | Monocottura, Monoporosa | Mosaic Tile | Mottled | Mullite Crystals | Non Oxide Ceramics | Normalization | Oil-spot glaze | Once fire glazing | Opacifier, Opacification | Opacity | Orton Cones | Ovenware | Overglaze | Oxidation Firing | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | PCE | Permeability | Phase Diagram | Phase Separation | Phase, phase changes | Physical Testing | Pinholing | Plasticine | Plasticity | Plucking | Porcelain | Pour Glazing | Precipitation | Primary Clay | Primitive Firing | Production Setup | Propane | Propeller Mixer | Pyroceramics | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refractory | Refractory Ceramic Coatings | Representative Sample | Respirable Crystalline Silica | Rheology | Rutile Glaze | Salt, soda firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Shivering | Sieve | Silica:Alumina Ratio (SiO2:Al2O3) | Silk screen printing | Sinter, sintering | Slake, Slaking | Slip Casting | Slip Trailing | Soaking | Soluble Colors, Sulfate Colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain | Stoneware | Stull Chart | Sulfate Scum | Sulfates, Sulphates | Surface Area | Surface Tension | Suspension | Tapper Clay | Target Formula, Limit Formula | Tenmoku | Terra cotta | Terra Sigilatta | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple, pyrometer | Thixotropy | Tony Hansen | Toxicity | Tranlucency | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Vaporization | Viscosity | Vitrification | Volatiles | Warping | Water in Ceramics | Water Smoking | Water Solubility | Wedging, kneading | Wheel Bat | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zeta Potential

3D Slicer

3D printing is very important in ceramics, hobby and industry. A slicer is software that slices up a 3D model and runs the printer to lay down each layer.

Details

Slicing software converts a 3D model (drawn by Fusion 360 or other 3D designer) into G-Code that a printer can understand. The G-Code contains head movement and temperature instructions. Many free and paid products are available. They can exist because of standards developed over the years in the 3D design industry. Slicers handle infills (e.g. a honeycomb pattern instead of printing pieces solid) and print supports to hold up sections that flare outward (it cannot print on thin air!).

While each 3D design package saves files in its own optimized format (e.g. F3D for Fusion 360), it can also export 3D geometry into standardized formats that other slicers can import (e.g. STL, 3MF). While standard formats have limitations, historically they have enabled the companies producing 3D design software to focus specifically on that and offload the highly complex slicing task (and driving the hundreds of available 3D printers) to other companies.

I have experience with Slic3r, Simplify 3D and Cura. I drive my cheap 3D printer via USB cable using Simplify 3D (it costs about $150), that machine was frustrating to get it working but this slicer eased things (it is very good at automatically generating support, has drivers for hundreds of printers and has an incredible number of options). On my Prusa MK3S I use their custom version of Sli3r (they call it Prusa Slicer and its free). Through its default settings and easier interface I have discovered rafts, and better fills, better overhang printing and the advantages of printing to an SD-card and letting the printer handle everything.

Slicer software can also handle the burden of updating the software in a 3D printer. Typically, when the slicer itself updates online, it downloads the printer software updater also. The next time you print via USB (or you insert an SD card) the printer notices the presence of an updater and asks if you wish to proceed with it. For the Prusa i3, this process is very easy.

G-Code 3D Printer instructions

G-Code 3D Printer instructions

Simplify3D knows how to convert the 3D geometry generated by Fusion 360 into G-Code (shown in the black text window lower right). I have just told Fusion 360 to print this and it automatically launched this and passed the 3D geometry to it. Simplify3D is a "slicer" because it knows how to convert a 3D object into slices that a 3D printer can lay down (one on top of the other). Simplify3D is fairly expensive and competes with a number of free products (like Slic3r, Cura). It gives me a 3D view of the object and enables positioning and rotating it on the bed and configuring dozens of parameters. It is about to deliver the G-Code (via a USB connection) to my RepRap 3D printer (although it is often preferable to use the "Save Toothpaths to Disk" button to generate G-Code and write it to an SDCard which the printer can accept). The black text-edit window shows what the G-Code looks like. It is just text. With hundreds of thousands of commands that mostly move the head to successive X-Y positions and a defined filament feed-rate.

Links

Glossary 3D Printer
Standard 3D printers (not clay 3D printers) are incredibly useful in ceramic production and design, bringing difficult processes within reach of potters and hobbyists.
Glossary 3D Design
3D Design software has revolutionized traditional ceramic manufacturing, now it is accessible to hobbyists and potters.
Glossary 3D-Printing
Standard 3D printing technology (not printing with clay itself) is very useful to potters and ceramic industry in making objects that assist and enable production.

By Tony Hansen


Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address

Name

Subject

Message


Upload picture


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved