| Monthly Tech-Tip | Feb 14-15, 2026 - Major Server Upgrade Done | No tracking! No ads! |
Tenmoku is a kind of high temperature reduction firing ceramic glaze. Glossy, very dark brown or maroon, fluxed by iron oxide to have high melt fluidity.
Key phrases linking here: tenmoku - Learn more

Tenmoku mugs fired at cone 10R. Two different recipes.

This picture has its own page with more detail, click here to see it.
This occurs as they cool in the kiln. The slower the cooling and the more iron oxide there is, the bigger and more plentiful these crystals will be.

This picture has its own page with more detail, click here to see it.
Each potter using Tenmoku has their own preferences about how the glaze should look. Ron clearly likes the iron crystals to develop well on the edges of contours. He has learned how to walk a delicate firing and recipe balance to achieve this effect. If the percentage of iron is too high, or the glaze is applied too thin, reduction is too heavy or the cooling too slow there will be too muchy crystallization. If the iron is too low, cooling is too fast or the glaze it too thick it will be a solid black. Additionally, this effect depends on a glaze having a fluid melt (the iron is a strong flux), if the glaze is too thick it will run downward during the firing.

This picture has its own page with more detail, click here to see it.
This is Plainsman H550 and P700. The inside glaze is G1947U. They were fired in 10 reduction.

This picture has its own page with more detail, click here to see it.
A buff stoneware (left) and brown speckled stoneware (right). Notice that the iron specks act as catalysts to crystallize in a manner similar to the edges of contours.

This picture has its own page with more detail, click here to see it.
Iron oxide is an amazing glaze addition in reduction. Here, I have added it to the G1947U transparent base. It produces green celadons at low percentages. Still transparent where thin, 5% produces an amber glass (and the iron reveals its fluxing power). 7% brings opacity and tiny crystals are developing. By 9% color is black where thick, at 11% where thin or thick - this is “tenmoku territory”. 13% has moved it to an iron crystal (what some would call Tenmoku Gold or Teadust), 17% is almost metallic. Past that, iron crystals are growing atop others. These samples were cooled naturally in a large reduction kiln using the C10RPL firing schedule, the crystallization mechanism would be heavier if it were cooled more slowly (or less if cooled faster). The 7% one in this lineup is quite interesting, a minimal percentage of cobalt-free black stain could likely be added to create an inexpensive and potentially non-leaching jet-black glossy.

This picture has its own page with more detail, click here to see it.
In the glaze on the left (90% Ravenscrag Slip and 10% iron oxide) the iron is saturating the melt crystallizing out during cooling. GR10-K1, on the right, is the same glaze but with 5% added calcium carbonate. This addition is enough to keep most of the iron in solution through cooling, so it contributes to the super-gloss deep tenmoku effect instead of precipitating out.

This picture has its own page with more detail, click here to see it.
This cone 10R glaze, a tenmoku with about 12% iron oxide, demonstrates how iron turns to a flux, converting from Fe2O3 to FeO, in reduction firing and produces a glaze melt that is much more fluid. In oxidation, iron is refractory and does not melt well (this glaze would be completely stable on the ware in an oxidation firing at the same temperature, and much lighter in color).

This picture has its own page with more detail, click here to see it.
Tenmoku reduction fired glazes can be so beautiful yet few people use them. One reason is the melt fluidity - runs stick pieces to the kiln shelf. While the melt fluidity is the key to the appearance it is also the curse. These glazes also pool on inside bottoms producing glaze compression issues. And they stretch thin over rims roughening them with any grit from the body or glaze materials. The running onto the shelf issue at least does have a simple solution: The GR10-A base as a catcher glaze on the outside bottoms and a liner on the inside (and even optionally wrapping over the rim). I use a dipping glaze version of it for the insides and a brushing glaze version for the bases (and up the side walls about 1cm). The tenmokus GR10-K1 (left) and GA10-B (right) can be applied thickly and it’s no problem, 5-10 mm of catcher glaze is all it takes to stop the running.

This picture has its own page with more detail, click here to see it.
Body is Plainsman P580. Far left: G2894 Ravenscrag Tenmoku with 10% whiting and 10% iron oxide added. Center: Pure Alberta Slip plus 5% whiting and 1% iron oxide. Right: Pure Alberta Slip plus 5% whiting and and 2% iron. The Alberta Slip versions are less messy to use because so much less iron is needed (iron also causes the slurry to gel). The Ravenscrag and higher iron Alberta Slip versions are running, they are too fluid. The rust colored crystals are not developing the way they did with these glazes on an iron stoneware (in the same firing).

This picture has its own page with more detail, click here to see it.
GR10-K1 Cone 10R Ravenscrag Tenmoku (right) compared to Tenmoku made from Alberta Slip (left, it is 91% Alberta Slip with 5% added calcium carbonate and 2% iron oxide). Left is Plainsman P700 porcelain, right is H570. Tenmokus are popular for the way they break to a crystalline light brown on the edges of contours.

This picture has its own page with more detail, click here to see it.
Right: Alberta slip is almost a Tenmoku glaze by itself at cone 10 reduction. To go all the way only 1-2% more iron is needed (plus a little extra flux for melt fluidity, perhaps 5% calcium carbonate). Compare that to crow-baring a clear glaze into a tenmoku (left): This is G1947U plus 11% red iron oxide. That produces a slurry that is miserable to work with (it stains everything it comes into contact with) and turns into a jelly on standing.

This picture has its own page with more detail, click here to see it.
The mug on the left was in a hotter part of the kiln (gas reduction), it's surface is brilliant glassy smooth and metallic. The one on the right is dull, pebbly, much less interesting. The temperature difference is about one cone. This is not enough to make much difference in the transparent glaze, but the tenmoku is sensitive, it needs to reach the full temperature.
![]() Tenmoku mugs |
| Glossary |
Kaki
|
| Glossary |
Metallic Glazes
Non-functional ceramic glazes having very high percentages of metallic oxides/carbonates (manganese, copper, cobalt, chrome). |
| Recipes |
GA10-B - Alberta Slip Tenmoku Cone 10R
You can make a tenmoku from Alberta Slip by adding only 2% iron oxide and 5% calcium carbonate |
| Recipes |
G1947U - Cone 10 Glossy transparent glaze
Reliable widely used glaze for cone 10 porcelains and whitewares. The original recipe was developed from a glaze used for porcelain insulators. |
| URLs |
https://tenmokus.com/
Tenmokus.com Dazzling cups and teapots with tenmoku glazes. |
| By Tony Hansen Follow me on ![]() | ![]() |
Buy me a coffee and we can talk