Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Modeling | 3D Printer | 3D Printing Clay | 3D Slicer | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI in Ceramics | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire API | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Digitalfire Taxonomy | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Displacer | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Infill and Support | Ink Jet Printing | Inside-only Glazing | Insight-Live | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner Glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mold Natches | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Pour Spout | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Side Rails | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water Content | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | WooCommerce | Wood Ash Glaze | Wood Firing | WordPress | Zero3 | Zero4 | Zeta Potential

Ceramic Ink

You can make your own ink (or buy it) and apply it to ware using various methods (e.g. rubber stamping, silk screen, inkjet decals).

Key phrases linking here: ceramic ink - Learn more

Details

Ceramic inks are simply carriers of ceramic fine particled metallic oxide pigments (not raw colorants but prefired stain powders) that are used in automatic application techniques. Inks must have a physical consistency suitable for producing fine detail, this requires that they be suspended in a medium (as opposed to just water). Depending on the application technique, these mediums can be thick and flow like a printing ink. Or they can have a gel consistency that holds itself in place after application. Or they can be made from nano-size particled stains that stay in suspension in a highly fluid medium (for inkjet printing). They can be water or oil based. They may need to dry quickly, slowly and may not need to dry at all before firing. But the objective is the same: Tune a carrier for the application process so as to achieve a layer of metallic oxide based powder that will produce color exactly where desired and with crisp, well defined color edges.

Ceramic inks also need a melt carrier, that is, the metallic oxide colorant mix must be part of a larger silica:alumina:flux recipe that melts and envelopes it in a glass that will adhere to the body and be compatible with the over-lying glaze (or form a hard wear surface and be compatible with the under-lying glaze). The compatibility must also extend to matching the thermal expansion of the body and glaze and the melt carrier must also have a chemistry that is compatible with the color system. Each different stain system has its own needs and the melt carrier must be tuned to it. Carrier formulations even need to be adjusted with varying proportions of certain colors (to maintain the degree of gloss, for example).

Thus, formulating a good ceramic ink to work with the process at hand can be one of the most challenging task a technician will face. The simplest ink system is often used by potters: They mix glycerine with pure ceramic stains for rubber stamping. For some production methods and selected stain systems, this can be successful. The next level of complexity is to blend stains with a glaze base and suspend them in a colorless screen printing medium and then silk screen designs onto tissue paper, then transfer them onto the ware using water and pressure on the back side. It is now easy to print your own right or wrong-reading negatives on clear emulsion-treated acetates and photo-develop them onto a silk screen (youtube has many videos on the various techniques people are using). However in recent years, inkjet printing of ceramic stain based inks has all but taken over the entire ceramic world from hobbyist to the largest manufacturers. Many previously unrelated technologies have come together to make this possible. Inks have been highly tuned so they can be used in standard printers. The first major revolution was the ability to print decal transfers directly, this, combined with new software and other developments, brought unprecedented flexibility to the decoration stage of production. But now, specially designed printers spray the design directly on to the finished ware at high speed.

Compared to glazes these inks have very low density. Examples we have noted range from 1.02 to 1.3 (from two suppliers, demonstrating a range of tolerance within the inkjet system). Individual inks must be carefully maintained to density (as measured with hydro gravimeteic density instruments) and viscosity (e.g. Brookfield viscometer). Filtration testing and careful observation of printed tone are also part of the QC regimen.

Related Information

Links

Glossary Ink Jet Printing
Ink jet printed decoration is now pervasive in all parts of the ceramic industry. And in hobby also.
Glossary Silk screen printing
Silk screen printing is one of the best options for hobbyists and potters to reproduce crisp and detailed decoration. But there are many details to know.
Glossary Ceramic Decals
This process of printing a design (using ceramic inks) onto film-coated paper to create a waterslide transfer. On wetting, the film decal can slide off the backing on to the glazed ware.
Articles Inkjet Decoration of Ceramic Tiles
Theory and description of various ceramic ink and inkjet printing technologies for ceramic tile, the issues technicians and factories face, inket printer product overview.
URLs http://www.ngycolour.com/?_l=en
NGY Digital ceramic ink producer in China
URLs https://www.fsjunxing.com/en
Junxing New Material Co, ceramic ink, glaze, body and inclusion pigments producer in China
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk

 



https://digitalfire.com, All Rights Reserved
Privacy Policy