Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Printer | 3D Printing Clay | 3D Slicer | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI in Ceramics | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire API | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Digitalfire Taxonomy | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Ink Jet Printing | Inside-only Glazing | Insight-Live | | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Pour Spout | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Side Rails | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water Content | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zero4 | Zeta Potential

Iron Red Glaze

A type of ceramic glaze, typically fired around 2200F, where iron oxide in the cooling glass precipitates out to form a striking red crystalline mesh on the surface.

Key phrases linking here: iron red glaze, iron red, iron-red - Learn more

Details

Iron red glazes are easiest in high-temperature reduction firings, it is just a matter of saturating a transparent base with 12%+ iron oxide to create a "beyond Tenmoku" (Tenmokus have about 10% iron). That being said, iron red glazes are most commonly found in the cone 6 oxidation range, likely because it is a much more accessible process. That is what this page discusses.

A cone 6 oxidation iron red glaze

The red oxidation color is a product of the chemistry and a slow-cooled firing. The iron crystals form during the cooling cycle in the kiln. The growth depends on the melt being very fluid (to provide the mobility needed to orient in the preferred crystal lattice) and there being lots of iron oxide present. Compared to a typical cone 6 functional glaze, fluid melts need high B2O3 (or a combination of B2O3 and Li2O or ZnO) coupled with low Al2O3/SiO2 (a high Si:Al ratio does not seem necessary). KNaO is low and MgO/CaO is high (especially MgO). P2O5 is usually found and thought to be necessary (yet strangely, some iron-red recipes do not contain it). At least one commercial iron red has balanced the chemistry enough that a special firing curve to develop the crystals is not even needed!

A firing schedule thought to grow the crystals slows between 1800-1600F on the way down, e.g. 100F/hr (the temperature range would depend on melt fluidity of the base). Since the glaze is very fluid (and thus susceptible to developing surface blisters) it is also advisable to do a drop-and-hold rather than holding at cone 6, like the C6DHSC schedule (which could be speeded up with a faster drop between 2100 and 1800F).

Thicker applications give more crystals but also dry-crack and run more during firing, thinner sections tend to be gloss black. Iron red glazes can be very messy to work with, the slurry tends to turn into jelly, because of the flocculating action of the red iron oxide they usually contain (in a high percentage). If thinned with water the specific gravity often goes too low. When excessive clay is present the situation gets worse because of excessive shrinkage during drying (with accompanying cracking and crawling). Understandably it is common to use Crocus Martis instead of red iron (of course more is needed since it is not as pure). Black iron is an even better option, it does not gel and only slightly more is needed. Some potters use the purest iron oxide they can find (99%) rather than impure sources, perhaps because this is the most melt-available and therefore crystallizable.

Iron reds can develop more metallic effects when layered over other glazes. Rutile variegates iron reds.

See G3948A, G2896 and G2890B.

Related Information

An iron red cone 6 reactive glaze up close


Iron red cone 6 glaze up close

G3948A is a cone 6 iron red. This sample is firing using the C6DHSC schedule. It is a reactive glaze in more ways than one. This closeup reveals just how much is happening on that fired surface. The recipe contains spodumene, an expensive material, but clearly it is worth it.

G3948A iron red cone 6 oxidation glaze at its best


G3948A metallic iron red glaze

This spoon jar is glazed with the G3948A recipe. It was fired using our standard cone 6 C6DHSC slow cool schedule. The body is Plainsman Coffee Clay. The inside glaze is GA6-B. The metallic appearance was achieved because of the thick application. But this glaze has a fluid melt and should have run on to the kiln shelf. Why didn't it do that? Because of the way I glazed it. The inside was done first. Then wax was applied over the rim and down the inside for a couple inches. Then I applied a thin layer of the iron red to the bottom half to act as a catch glaze - by pushing the piece down into the bucket of dipping glaze for only a second. That dried in about 5 seconds enabling flipping it over and pressing it down to do the upper half. I held it down much longer and got a much thicker layer (with a little overlap over the thin section). During firing it all evened out - leaving only a little evidence of this method near the base.

Iron red glaze fired at cones 6, 5 and 4


Iron red glaze at cone 6, 5, 4

These mugs are Plainsman Coffee Clay. The glaze on all three is G3948A iron red. They were fired at cone 6, 5 and 4 using the C6DHSC schedule (adjusted for top temperature). As can be seen, the red color depends on the melt fluidity achieved at cone 6.

New iron-red glaze on porcelain at cone 6 oxidation


Two iron red mugs

This is the G3948A recipe. Iron red glazes are easy to do in high-temperature reduction but not so in medium-temperature oxidation. Most people just try a bunch of recipes they find online hoping that one of them actually fires the way it is shown in the picture! A better approach for us was to study a range of ones claiming to be iron reds looking for things in common with the chemistries and recipes. G3948A, on these two M370 mugs, is a product of that. Unlike many, the original recipe we found, G3948, did have a suggested firing schedule. It seemed strange so we just used the standard C6DHSC slow-cool schedule. That one is also ideal for the liner glazes, giving them a better gloss finish. It was not tempting to even try the original recipe (because it measured up poorly against common sense recipe limits), but it did make sense to fix obvious issues and then try it. Unlike every other recipe we have seen, this one suffers no issues with gelling of the slurry because it contains no Gerstley Borate and uses black iron oxide. It has very good application properties and requires only 80 water for each 100 powder to mix as a creamy dipping glaze. And it does not need any lithium carbonate.

The Iron-Red mechanism is working in one fluid melt base but not the other


Iron red glazed cups

These two pieces were fired in the same kiln using the C6DHSC firing schedule. Fluid melts are an essential enabler of crystal growth during cooldown, that is what there are. Both contain significant Li2O to help the B2O3 achieve that fluid melt. Glaze #1, G3948A, has less iron than is typical yet works! Its high MgO/CaO are very likely key factors as to why. Glaze #2 has much more Na2O and it has both SrO and ZnO that #1 does not have. #2 is much higher in Al2O3 and has more than double the amount of SiO2. So which of all these factors is responsible for #2 having zero crystals? Very likely it is two important ones: The low CaO/MgO levels. And the high SiO2.

How to keep an iron-red glaze from being a bucket-of-jelly


This is G2890C, a cone 6 iron red glaze. It was so gelled that it was unusable! First I measured specific gravity (with difficulty): 1.48. That's too high, so I added water to reduce it to 1.44. Then I dripped in Darvan 811 (as recommended for iron-containing slurries). I added it until adding more did not thin it further (more was needed than for deflocculating the average non-iron-containing slurry). But it was still gelled. The only choice was to add more water, taking the specific gravity down to 1.42. That made the difference, making the slurry thin enough for both better application and preventing it going on in too thick of a layer. But there is an even better solution: Use black iron oxide, no Darvan is even needed for that.

G2896 Ravenscrag Plum Red iron red cone 6 glaze


Original development of the G2896 recipe was done to match the chemistry of Randy's Red (a popular recipe). At the time we did not do any special firing schedule to encourage the growth of the red crystals.

Iron-Red high temperature reduction fired glaze


This recipe, our code 77E14A, contains 6% red iron oxide and 4% tricalcium phosphate. But the color is a product of the chemistry. The glaze is high Al2O3 (from 45 feldspar and 20 kaolin) and low in SiO2 (the recipe has zero silica). This calculates to a 4:1 Al2O3:SiO2 ratio, very low and normally indicative of a matte surface. The iron oxide content of this is half of what is typical in a beyond-tenmoku iron crystal glaze (those having enough iron to saturate the melt and precipitate as crystals during cooling). The color of this is also a product of some sort of iron crystallization, but it is occuring in a low-silica, high-alumina melt with phosphate and alkalis present. Reducing the iron percentage to 4% produces a yellow mustard color (we thus named this "Red Mustard").

Cone 10 reduction iron red cone 10 glaze


Courtesy of Steve Irvin.

An iron crystal glaze on a buff stoneware at cone 10R


This iron crystal glaze is Ravenscrag slip plus 10% iron oxide fired to cone 10R on Plainsman H550. Since Ravenscrag slip is a glaze-by-itself at cone 10, it is an ideal base from which to make a wide range of glazes.

Iron Red glazes look a little different in a flow tester


A GLFL test for melt flow comparing two cone 6 iron red glazes fired to and cooled quickly from cone 6. Iron reds have very fluid melts and depend on this to develop the iron red crystals that impart the color. Needless to say, they also have high LOI that generates bubbles during melting, these disrupt the flow here.

Why does fluid-melt G3948B not produce an iron red


Stull chart for iron red glazes

Chazo Chazim Mehmeti made this Stull chart to help explain why my G3948B does not produce iron crystals. It plots the formula amounts of Al2O3 (vertical axis) vs. SiO2 providing one lens through which to view the chemistry of multiple iron red glaze recipe candidates that work and don't work. His argument is that, among other necessary things like the presence of P2O5, MgO and CaO, the amounts of SiO2:Al2O3 must be within certain bounds (this chart conveys both the ratio and amounts). He points out that the relationship is sensitive enough that one should use the closest possible chemical analysis of the materials (not generic ones) when plotting points on the chart. Over a year of testing with his students, the ones fitting in the small zone on the chart worked every time (#2 being best). That is where my G3948A, which is working really well, also resides. The G3948B, which does not work, appears way off to the right because of its high SiO2 content. Of course, there could be other reasons for its failure, but the SiO2 issue is a good place to start.

Inbound Photo Links


Insight-live screen with glaze sample
Fix obvious issues in Glazy recipes before even trying them

Make your own PC-56 glaze
You can make your own Ancient Copper brushing glaze

Links

Recipes G2826X - Randy's Red Cone 5
A popular Gerstley Borate based iron-red glaze.
URLs http://cone6pots.ning.com/forum/topics/iron-glazes-and-achieving-red-color-in-oxidation
Article on iron red glazes at Cone6Pots
Glossary Ceramic Glaze
Ceramic glazes are glasses that have been adjusted to work on and with the clay body they are applied to.
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk

 



https://digitalfire.com, All Rights Reserved
Privacy Policy