3D Design | 3D Printer | 3D Slicer | 3D-Printed Clay | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Coring | Bleeding colors | Blisters | Bloating | Blunging | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brushing Glaze | Buff stoneware | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Cone plaque | Cones | Copper Red | Cordierite Ceramics | Crackle glaze | Crawling | Crazing | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | De-Airing Pugmill | Decomposition | Deflocculation | Deoxylidration | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stains | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Durability | Glaze fit | Glaze Gelling | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | Handles | High Temperature Glaze | Hot Pressing | Incised decoration | Ink Jet Printing | Inside-only Glazing | Insight-Live | Interface | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Lime Popping | Limit Formula | Limit Recipe | Liner Glaze | LOI | Low Temperature Glaze Recipes | Lustre Colors | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metallic Glazes | Micro Organisms | Microwave Safe | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | PCE | Permeability | Phase change | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Precipitation | Primary Clay | Primitive Firing | Production Setup | Propane | Propeller Mixer | Pyroceramics | Pyroceramics | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refractory | Refractory Ceramic Coatings | Representative Sample | Respirable Crystalline Silica | Rheology | Rutile Glaze | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Shivering | Sieve | Silica:Alumina Ratio (SiO2:Al2O3) | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Tony Hansen | Toxicity | Tranlucency | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Viscosity | Vitrification | Volatiles | Warping | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zeta Potential

Surface Area

The surface area of a powder can be measured. It is the total surface area of all the particles in a gram of the material, and this number can be alot larger than you might think.

Details

Surface area (or SSA - Specific Surface Area) is a physical property you will see listed on the data sheets and certificates of analysis of many materials. Some materials (e.g. sedimentary clays) can contain particles that have a wide range of sizes, shapes, densities, surface texture, reactivities and unique chemistries and mineralogies. Other materials (e.g. kaolins) contain mostly one particle shape with the only significant difference being particle size. More than any other material, the physical properties of plastic clays and clay-containing slurries are directly tied to surface area. In clays, the total surface area of all particles in a sample help explain many properties, (e.g. plasticity, drying shrinkage, dry strength, melting behaviour).

In clays, more surface means a greater ability of the clay to exhibit plasticity. Water acts as a glue, holding all the particles together (because the surface chemistry of clay particles has an electrolytic affinity for water). The total forces by which they attract to it increase exponentially as surface area does.

Kaolins have comparatively large ultimate particles and thus have less surface area than ball clays (one popular kaolin has an SSA of 20-30 square meters per gram). Ball clays, having particle sizes up to ten times smaller, should have dramatically more surface area. But, their SSAs can sometimes be in the same range as kaolins, this is counterintuitive since they are much more plastic. Bentonites have particle sizes up to ten times smaller than ball clays, only a gram can have hundreds of square meters of surface area! Notwithstanding this, some manufacturers quote SSA values in the range of ball clays (or even kaolins)! It can thus be a little confusing, perhaps we can take from this that SSA is not much of an absolute indicator of the magnitude of any property (e.g. plasticity). Remember, surface area is just one part of understanding the physical properties of a material, especially clays (the reactivity and topography of that surface will contribute to properties also).

Surface area values are thus best suited as quality control indicators for a specific material. When the SSA value changes it is a heads-up to possible changes in process or materials that have occurred.

Related Information

One gram of processed hectorite has a surface area of 750 square meters!

A combination of surface area, surface topography, surface chemistry and surface electrolytics determines how plastic a clay is. This material is super plastic.

Example of a certificate of analysis for a kaolin

When companies ship materials they often include these with the shipment. The information reported is often very basic and properties important to ceramics are often not found.

Links

Glossary Water in Ceramics
Water is the most important ceramic material, it is present every body, glaze or engobe and either the enabler or a participant in almost every ceramic process and phenomena.
Glossary Particle orientation
Ceramic clays have a flat particle shape. Various factors determine the extent to which they can bind face-to-face in pugged clay in the presence of particles of other materials.
Glossary Ultimate Particles
Utlimate particles of ceramic materials are finer than can be measured even on a 325 mesh screen. These particles are the key players in the physical presence of the material.
Glossary Particle Size Distribution
Knowing the distribution of particle sizes in a ceramic material is often very important in assessing its function and suitability for an application.

By Tony Hansen


Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address

Name

Subject

Message


Upload picture


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved