Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Printer | 3D Printing Clay | 3D Slicer | | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI in Ceramics | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Ink Jet Printing | Inside-only Glazing | Insight-Live | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zero4 | Zeta Potential

3D-Printing

Standard 3D printing technology (not printing with clay itself) is very useful to potters and ceramic industry in making objects that assist and enable production.

Key phrases linking here: 3d-printing, 3d printing, 3d-printed, 3d printed, 3d-print - Learn more

Details

It is becoming more practical for potters and ceramic artists or entrepreneurs to take on projects never before possible because of the increasing accessibility of 3D printing. More importantly, 3D printing makes you less dependent on suppliers. Ordinary consumer printers are useful for making mock-ups, master and block molds, forms, templates, mold pour-spouts, supports, holders, cutters, tools, stamps, embossers, rollers and more. It puts forming techniques you would not otherwise use (e.g. jiggering, casting, pressing, extruding, stamping) into easier reach.

The most difficult obstacle to adopting 3D printing is learning 3D design software. Don’t bother buying a printer till you do that. It is intimidating. The existence of standards is a big help in navigating all the options, terminology and methodology are very similar across all products. A major enabler is that, as of 2022 anyway, AutoDesk Fusion 360 is still free for use by education and businesses earning less than $100K per year (otherwise entry level is around $500/yr). It is the standard for consumer part design and has exceptional online resources and training and almost every other product compares itself to Fusion 360. However, they are a commercial company, and don’t kid yourself, they are going to try to turn you into a customer and make you dependent on them. That being said, their product is still the best educational route to learning 3D. The experience, enthusiasm and confidence gained is applicable to moving to a free product (like FreeCAD) or a less expensive tablet-based one like Shapr.

Online service providers offer a wide range of printing technologies, so you can email 3D files to them. An exciting technology is laser fusing of powder, even metal powder (in this way metals and ceramic can be precisely printed). That being said, it is still best to have your own printer. This is because the process of learning and perfectly designing involves cycles of tweaking designs and reprinting them. The freedom to do this is a big part of the utility of 3D printing. Once you have a proven design, then consider sending it away for printing in higher quality.

Owning your own printer is largely possible because of the RepRap international movement to develop open-source hardware and software platforms for 3D printing. Reprap printers use standard buy-at-a-hardware-store parts or ones that the printer itself can make. This means that anyone can buy and assemble an inexpensive printer to learn many details of their mechanics and operation.

Making practical use of the technologies and not getting caught up in the hype of things can be challenging. One way to do this gradual evolution, just learn what you need to make the item required today. Contrary to the previous statement, it may actually be good to buy a printer before learning the design software, watching it sit idle will motivate you to learn Fusion 360. By the same token, paying a consultant on Upwork to help you learn will motivate progress, just to avoid wasting that money and paying more consultants! The real “lights-on” moments will happen when you develop ways to draw things that are better than the teachers.

Related Information

Printing a prototype propeller for my Lightnin lab mixer

Tap picture for full size and resolution

An example of how handy the ability to print in 3D can be. The worn-out stainless propeller costs $300 to replace. But the size and pitch of the blades is not right anyway. So I draw them using Fusion 360 and print them in PLA plastic, enabling experimenting with different sizes and pitches. While I could have one printed in stainless at shapeways.com I do not need to because these plastic ones are surprisingly durable. How about getting a tight fit on the shaft? No problem. I measured this shaft with a callipers and printed that size. It was a little tight so I printed slightly larger and it fits very tightly. One issue: If you mix slurries with hot water, it will travel up the shaft and the blades will bend.

Making complex ceramic tile shapes by 3D printing your own cookie cutters

Tap picture for full size and resolution
Cookie cut ceramic tiles

This was done on an affordable RepRap printer. The red plastic templates were drawn in Fusion 360 and sliced and printed using Simplify3D. A wooden block was used to press these cookie cutters into the clay. The plastic wrap made sticking a non-issue (and rounded the corners nicely). Commercial bottled glazes were applied to this low fire talc body by brushing (in three coats) after bisque - the rounded corners make brushing easier. The tiles were fired at cone 03. This is an old classic design that I discovered when researching Damascus tile. The toughest obstacle was learning how to use Fusion 360. It turns out that cookie cutters are a starter project for many 3D software packages, there are lots of videos on making them.

3D-Printing the Medalta 66 prototype mug

First, we did the 3D drawing in Fusion 360. It took 12 hours on this inexpensive build-it-yourself printer! Notice the supports it prints for the handle, these break away after it is done. Of course the surface is not smooth enough to use as a model for mold-making. But to be able to hold it to judge size, wall thickness, handle feel and shape is very valuable. All other drawings we made (for molds, templates, spouts, etc) were based on this starting point.

Hand-tooling a mug model vs. 3D-printing a mold to cast it

Tap picture for full size and resolution

I am creating molds for a 2019 casting-jiggering project to reproduce heavy stoneware mugs manufactured here 50 years ago. I have a profile drawing I want to match (upper left). The solid plaster model on the left was my first attempt at manual tooling. The metal template was time-consuming to hand-make, its contour was difficult-to-match to the drawing and the plaster surface turned out rough and difficult-to-smooth. To make the plaster model on the right I printed a shell (using my 3D printer), poured the plaster in, extracted it after set and then smoothed it on the wheel using a metal rib and trimming tool. It matches the drawing perfectly and the round is very true. 3D-printing is revolutionary for this type of thing! The drawings: I hired someone on Upwork.com to make them for me (using Fusion 360). The shell-mold (to cast the model) on the upper right: I printed that too, in two pieces.

Large cookie-cutter 3D-printed in four pieces

Tap picture for full size and resolution

These four sections were glued together to make a larger one. Now it is possible to quickly precision-cut the shape for making my pie-crust mugs. Later I re-printed these templates on a better 3D printer so the inner vertex holes cut out much better.

A 3D-printed spout enables a flared rim on cast ware

Tap picture for full size and resolution

It was glued down using the casting slip itself (it stuck in seconds). About ten minutes after draining a fettling knife was run around the inside, then it detached easily. The overhung lip produced imparts structural strength that resists warping, for drying and firing, to the thin walled piece. This spout has advantages over the traditional "spare" built in to the upper part of a mold. It enables a one-piece mold. The lip can be more overhung. Draining is cleaner and easier. Molds are lighter. Extraction can be done sooner and it is easier. The spout does not absorb so there is less scrap. The degree of overhang is adjustable by simply printing new spouts.

The incredible utility of 3D printing master handle molds

Tap picture for full size and resolution

These molds are 3D-printed from PLA filament. They are part of my 2019 year-long casting-jiggering project. A quick soaping, 164g water, 236g plaster and a fifteen minute set produced this plaster mold. It takes time to learn how to soap the masters properly to get optimum quality, but these molds seem to work well regardless. The two halves mate with a tiny amount of play, but it is easy to line them up perfectly (the play actually enables lateral movement that aids in releasing the handle). It is actually easier to cast handles solid rather than pour the slip out, they can be ready to apply in an hour after pouring. The ease of making these molds puts slip casting within much easier reach for potters and small companies.

Fusion 360, my choice for 3D modelling in ceramics

Tap picture for full size and resolution
AutoDesk Fusion 360 home page

Intimidation by the complexity of this type of software is the biggest obstacle you will face to learning 3D design (for 3D-printing). Fusion 360 is the new mission of AutoDesk, the leader in CAD software for 30 years, bringing much of the power of their industrial strength Inventor product into the hands of everyone! Fusion 360 has a lot of advantages. It is a standard. There is a simple learning curve via their Tinkercad.com, videos on Youtube, easy online help and many freelancers to hire (at Upwork.com). It is free to qualifying users (teachers, students or people who earn less that $100k/yr), the fact that software of this kind of power and utility is actually available to anyone who wants to try it is amazing. Fusion 360 (and other 3D design products) cannot run 3D printers (3D slicers do that). Fusion 360 is very demanding on the processor and graphics hardware of your computer, typical laptops are not powerful enough.

G-Code 3D Printer instructions

Tap picture for full size and resolution

Simplify3D knows how to convert the 3D geometry generated by Fusion 360 into G-Code (shown in the black text window lower right). I have just told Fusion 360 to print this and it automatically launched this and passed the 3D geometry to it. Simplify3D is a "slicer" because it knows how to convert a 3D object into slices that a 3D printer can lay down (one on top of the other). Simplify3D is fairly expensive and competes with a number of free products (like Slic3r, Cura). It gives me a 3D view of the object and enables positioning and rotating it on the bed and configuring dozens of parameters. It is about to deliver the G-Code (via a USB connection) to my RepRap 3D printer (although it is often preferable to use the "Save Toothpaths to Disk" button to generate G-Code and write it to an SDCard which the printer can accept). The black text-edit window shows what the G-Code looks like. It is just text. With hundreds of thousands of commands that mostly move the head to successive X-Y positions and a defined filament feed-rate.

Fusion 360 on YouTube

Tap picture for full size and resolution

Popular gurus get millions of views on their videos. Lars Christensen, Kevin Kennedy and Tyler Beck are popular contributors. Each of them has plenty of videos to teach you everything you need to know to get started designing for your ceramic production. If you get stuck, there are hundreds of places on line to go to find help. It is helpful if you know how to do a screen recording (e.g. using Screencast-o-Matic) to be able to demonstrate your problem. Getting specific answers to specific problems is a surefire way to progress in your knowledge. The first item to learn is sketching, if you can master that much of what you did will be modifying sketches (e.g. extruding, revolving, sweeping and lofting them).

Final cast-jiggered cone 6 mug beside original 3D-printed mock-up

Tap picture for full size and resolution

This is a product of a casting-jiggering project I did in 2019 to recreate a 1960s Medalta Potteries mug. The first step was drawing a profile in 2D (using Adobe Illustrator) and then working with a Fusion 360 freelancer at Upwork.com to create a quality 3D drawing. 3D printing this mock-up was possible after that, using my favorite 3D slicer, Simplify 3D. The mug was drawn "parametrically", that is, measurements and geometric relationships were built-in such that changing contours and the size preserved the original design. The first production mug, made about a year later, is on the right. Molds were scaled up 10% from this mockup size so that final pieces would be this size, however the firing shrinkage of the clay turned out to be about 12%.

Here is what happens when you put a 3D-printed PLA part in hot water

Tap picture for full size and resolution

These are pouring spouts, they are glued (using the clay slurry) to the tops of molds to enable over-filling with clay slip (since the slip level drops during the time it is left in the mold). The "pouring spout" function permits much easier cleanup. Before each use I immerse these in water for a minute to remove the dried-on clay from the previous cast. But, obviously, that needs to be cold water.

Polish the plaster surface, not the 3D-printed shell-mold

Tap picture for full size and resolution

This plaster model was just removed from the 3D-printed shell behind. It dropped out easily (after tapping it at-an-angle on the corners), this worked well despite the resolution lines on the surface. While I could have spent time sanding and smoothing the inside of the shell-mold, it is actually far easier to smooth the surface of the plaster form after extraction. Seconds with a metal rib completely smooths any of the surfaces. And remember, it is easier to remove plaster items cast inside of 3D-printed molds rather than cast around the outside of them. I named this size as 95-5-113, referring to the TopWith-Angle-Height. I set these as parameters in Fusion 360 and can print adjustments to this size (labelling them appropriately).

3D-Printed shell to cast working plaster jigger molds

Tap picture for full size and resolution

The grey outer shell mold on the left was printed in two parts and glued together (at the shoulder). It's vertical split enables me to open it a little. The center model of the outside contour of the mug (on a two-step base) was made by casting the plaster inside another two-piece 3D-printed form I had made (we had to use a heat-gun and scissors to get the PLA printed form off of that plaster). It smooth the surface on the wheel using a metal rib and trimming tool. Then I stretched a rubber band around the first step at the bottom (because the shell was a little lose-fitting). Now the outer shell mold fits perfectly and clamps tightly in place. To cast a jigger mold it is just a matter of soaping the plaster model and the inside of the shell and pouring in a mix of 1300 pottery plaster and 900 water.

3D Printed spout for ball mill

Tap picture for full size and resolution
Ball mill jar with spout

When full of balls and glaze this Royal Doulton ball mix weighs about 80 lbs. If efforts to pour it out don't cause a hernia the slurry ends up spilling everywhere as the balls come out with it! Trying to stop the balls with my hand ends up spilling even more. The answer was to 3D print a spout and a ball retainer. The bar and screw that normally hold the lid on work well to hold this in place. For multiple batches of the same glaze, it can now be poured right from the rack, no need to carry it to our sink. And not a drop spills. In the upper right picture, I had to change the filament midway, from green to black. It was easy to draw this in Fusion 360. I first printed the ring and flange to be sure of a good fit into the rim. A rubber band stretched around the flange provides a very good seal with the jar.

Links

URLs https://www.imerys.com/product-ranges/ez-print-3d
Imerys EZ-Print cartridges for 3D printing clay
URLs https://sites.google.com/site/openprojectspage/cera-1-clay-extruder
The CERA-1 3D printer project by Bryan Cera
URLs https://all3dp.com/1/types-of-3d-printers-3d-printing-technology/
The seven main types of 3D printing technology
Glossary 3D Printer
Standard 3D printers (not clay 3D printers) are incredibly useful in ceramic production and design, bringing difficult processes within reach of potters and hobbyists.
Glossary Upwork
Using the services of online freelancers connects potters and small ceramic producers to expert engineering talent at low cost.
Glossary 3D Design
3D Design software has revolutionized traditional ceramic manufacturing, now it is accessible to hobbyists and potters.
Glossary 3D Slicer
3D printing is very important in ceramics, hobby and industry. A slicer is software that slices up a 3D model and runs the printer to lay down each layer.
Glossary 3D Printing Clay
Clay for 3D printing. People are getting carried away with the technology and forgetting the common sense things relating to the clay.
Projects 2019 Jiggering-Casting Project of Medalta 66 Mug
Media 3D Printing a Clay Cookie Cutter-Stamper
Create a clay cookie cutter by exporting a vector image from Illustrator into Fusion 360, adding width to lines and extruding them to form the cutter, stamp and base
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk



https://digitalfire.com, All Rights Reserved
Privacy Policy