Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Printer | 3D Printing Clay | 3D Slicer | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI in Ceramics | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Ink Jet Printing | Inside-only Glazing | Insight-Live | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zero4 | Zeta Potential

Triaxial Glaze Blending

In ceramics many technicians develop and adjust glazes by blending two, three or even four l materials or glazes together to obtain new effects

Key phrases linking here: triaxial glaze blending - Learn more

Details

An often employed a way to develop new (usually visual) glaze effects. There are many books and websites that cover this topic (and software to derive the recipe of the mixes). Triaxial is the most common form of blending (vs. linear, quadraxial). A factor that makes this type of blending easy-to-do is that corner or endpoints can be mixed as slurries (having equal specific gravities) and poured together by volume. Typically triaxial blend corners are labeled A, B and C. Mixes between corners, for example, A and B in the photos below, are termed 3A-1B (75% A, 25% B), 2A-2B (50% A, 50% B), 1A-3B (25% A, 75% B). Mixes in the center of the triangle contain all three corners, they are 2A-1B-1C, 1A-2B-1C and 1A-1B-2C.

In its most random instance, triaxial corner points are chosen from existing glazes that are unsuitable or extreme in some way (e.g. too matte, runny, not melted), with the hopes that somewhere within the blend will be a new interesting effect (choice of corner points is thus the key factor in the likelihood and finding a result). Materials (e.g. feldspar, silica, clay) are often blended to find the percentages at which they produce a good glass. In the most directed approaches, blends are done to fine-tune color, matteness, melt fluidity, etc.

Triaxial blending is about recipes. But people who know glaze chemistry (tempering that with knowledge of materials and minerals) employ blending techniques much less, often as a final step to fine-tune a recipe (after development by targeting or adjusting the chemistry). They see the discovery of glaze effects as much less a matter of chance and much more likely by empirical methods. No doubt you have seen web pages that describe ambitious blending projects, ones that end up with hundreds of fired glaze tiles that poorly comply with common sense recipe limits, how valuable are these really? As you might expect, at Digitalfire we promote this method of glaze development rather than triaxial blending.

That being said, an account at Insight-live.com is a great place to document this type of blending. Here is an scenario:

If the triaxial is a mix of three materials rather than recipes, then modify the above by creating just one recipe and describing the blend in its notes and attaching the picture of the fired result to it.

Related Information

A triaxial blend of Gerstley Borate and two native clays

Tap picture for full size and resolution

The result is much less predictable than for blending existing known glazes, these reservoirs contain the runoff if the melted result is excessively fluid.

A triaxial blend of three glazes at cone 6

Tap picture for full size and resolution

A is a matte white, B is Rich Iron Red and C is a glossy white. Recipes 1 and 2 are 75% A, 6 and 10 are 75% B, 9 and 12 are 75% C. 3, 4 and 5 are 50% A, 3, 7 and 11 are 50% B. 5, 8 and 11 are 50% C. This blend was done in 1977 in the lab at Plainsman Clays.

Tuning the degree of gloss in a colored matte glaze

Tap picture for full size and resolution

Matte glazes have a fragile mechanism. That means the same recipe will be more matte for some people, more glossy for others (due to material, process and firing differences). In addition, certain colors will matte the base more and others will gloss it more. It is therefore critical for matte glaze recipes to have adjustability (a way to change the degree of gloss), both for circumstances and colors. This recipe is Plainsman G2934 base matte with 6% Mason 6600 black stain added. It has been formulated to be on the more matte side of the scale so that for most people a simple addition of G2926B (M370 transparent ultra clear base recipe) will increase the gloss. That means users need to be prepared to adjust each color of the matte to fine-tune its degree of gloss. Here you can see 5:95, 10:90, 15:85 and 20:80 blends of the matte:gloss recipe bases.

Tuning the degree of gloss on a matte black glaze

Tap picture for full size and resolution

These 10 gram balls were fired and melted down onto a tile. The one the left is the original G2934 Plainsman Cone 6 MgO matte with 6% Mason 6600 black stain. On the right the adjustment has a 20% glossy glaze addition to make it a little less matte. Notice the increased flow (the ball has flattened more) with the addition of the glossy. In addition, while the percentage of stain in the one on the right is actually less (because it was diluted), the color appears darker! Tuning the degree of matteness when making color additions to a base is almost always necessary to achieve a glaze that does not cutlery mark.

Links

Articles Chemistry vs. Matrix Blending to Create Glazes from Native Materials
Is it better to do trial and error line and matrix blending of materials to formulate your glazes or is it better to use glaze chemistry?
Glossary Glaze Chemistry
Glaze chemistry is the study of how the oxide chemistry of glazes relate to the way they fire. It accounts for color, surface, hardness, texture, melting temperature, thermal expansion, etc.
Glossary Trafficking
At Digitalfire we use the term "recipe trafficking" to describe the online trade in ceramic and pottery glaze recipes that can waste your time and cost you lots of money. Better to learn to understand glazes.
Glossary Limit Recipe
This term refers to critical thinking ability that potters and technicians can develop to recognize recipes having obvious issues and merit, simply by seeing the materials and percentages.
URLs https://www.glazespectrum.com
500 fired tests of base glazes with oxide additions by Helen Partridge Love
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk



https://digitalfire.com, All Rights Reserved
Privacy Policy