Array ( [status] => 200 [status_message] => Glossary item [data] => Array ( [glossary_id] => 309 [moddate] => 2023-11-23 04:54:03 [word] => 3D Design [definition] => The biggest hurdle to adopting 3D printing is choosing and learning to use 3D design software. The processing power, multi-function mouse, connectivity and screen of a desktop computer are almost essential for this. And a desktop computer is generally needed to handle the 3D slicer software anyway. And 3D design software has decades of maturity on the desktop. Actually, some of what I just said is being challenged, 3D is moving to the iPad. As of 2022 Shapr is taking an industry-leading modeling engine, ParaSolid (the power behind SolidWorks), to the iPad. It also runs on desktop and enables working on the same design on both platforms. It is pricey, however. In 2023 Plasticity, also built on ParaSolid, is becoming more popular, it is targeted specifically at sculpting, modelling and 3D printing. Blender is taking animation and CGI by storm as a do-it-all tool, it is unimaginably powerful yet free (the add-on ecosystem it spawns has created a profitable industry). It is certainly capable of 3D modeling if you are determined enough to learn it. Rhino is also popular in ceramic circles. Choosing which 3D package to adopt is generally governed by what those assisting you are using (the complexity of learning this is not something to do alone). As already noted, learning a 3D design software package can be the most overwhelming part of getting into 3D printing. To prevent becoming overwhelmed it is vital to have a teacher (hire a consultant on Upwork if needed to guide you through the creation of several things). I recommend using Upwork.com to find a consultant. And Fusion 360 as the designer. [metadescrip] => 3D Design software has revolutionized traditional ceramic manufacturing, now it is accessible to hobbyists and potters. [metakeys] => Fusion 360, 3D, solidworks, rhino, pottery [links] => Array ( [glossary] => Array ( [0] => Array ( [link] => glossary/3D+Slicer [descrip] => 3D printing is very important in ceramics, hobby and industry. A slicer is software that slices up a 3D model and runs the printer to lay down each layer. [label] => 3D Slicer [ord] => 0 ) [1] => Array ( [link] => glossary/3D-Printing [descrip] => Standard 3D printing technology (not printing with clay itself) is very useful to potters and ceramic industry in making objects that assist and enable production. [label] => 3D-Printing [ord] => 0 ) [2] => Array ( [link] => glossary/3D+Printer [descrip] => Standard 3D printers (not clay 3D printers) are incredibly useful in ceramic production and design, bringing difficult processes within reach of potters and hobbyists. [label] => 3D Printer [ord] => 0 ) ) [url] => Array ( [0] => Array ( [link] => url/3277 [label] => https://www.omnicalculator.com/math/right-triangle-side-angle [descrip] => Right triangle calculator [note] => Useful to calculate angles and lengths when drawing 3D geometry from a model. [ord] => 0 ) ) ) [pictures] => Array ( [2458] => Array ( [z] => BomERYouPN [alttag] => [titletag] => [title] => The Prusa Slicer generates G-Code for 3D-printing [notes] => This slicer ships with, and is recommended for, the Prusa line of 3D printers (when you click to print something in your 3D design software (e.g. Fusion 360) it sends the 3D geometry to your chosen slicer software, that software drives the actual printer). Simplicity and the exact visual reproduction of the printed bed make this a good choice for slicing (slicing is the mathematical process of cutting a 3D object into layers that can be printed successively). Another advantage is that online help for this printer will generally assume the use of this slicer. There are a myriad of settlings and parameters that printing software must respect to adapt to each type of 3D printer and the pairing of the Prusa printers with this slicer will be the best. [filename] => qmmuahr8mm.jpg [path] => images/pictures/ [fullpath] => /var/www/digitalfire.com/4sight/images/pictures/ [fullurl] => https://digitalfire.com/4sight/images/pictures/ [picture_date] => 2019-11-14 14:08:55 [S3URL] => https://reference.s3.us-west-2.amazonaws.com/images/pictures/qmmuahr8mm.jpg [S3Date] => 2019-11-14 14:10:03 [timelinephoto] => 0 [ord] => 0 [direction] => in [url] => ) [2994] => Array ( [z] => JzYSWNHqLc [alttag] => Pyrometric cone mold [titletag] => [title] => Make your own pyrometric cones? Why not! [notes] => Supply chain problems are hitting everything. Even cones. It turns out one can make these! The shape of a self-supporting cone is easy to draw in 3D (I did it here in Fusion 360). It is a 25mm equilateral triangle base lofted to a 3mm one 65mm straight up on the front side. And then a cut-out across the front. By using 3D printed press molds and plastic clay I can press these by the dozen. What about a recipe? Cones melt short of being glazes but beyond being porcelains. I chose L3685Z3 engobe as a starting point, it has a linear vitrification curve spanning a wide range. Approaching this on the material level, not as a chemistry project, I did three iterations of adding Ferro frit 3110 to the engobe. Shown here are the second, "A" and third, "B" (on the right is an Orton cone 6). B has too much frit, A does not have enough. You likely guessed what I did next: Mixed A and B. The result was almost perfect, bent just a little too much. If you would like this 3D file in Fusion 360 format, it is available in the Files manager in your Insight-live.com account. [filename] => dc5kfm3han.jpg [path] => images/pictures/ [fullpath] => /var/www/digitalfire.com/4sight/images/pictures/ [fullurl] => https://digitalfire.com/4sight/images/pictures/ [picture_date] => 2022-07-26 21:29:10 [S3URL] => https://reference.s3.us-west-2.amazonaws.com/images/pictures/dc5kfm3han.jpg [S3Date] => 2022-07-26 21:40:01 [timelinephoto] => 1 [ord] => 0 [direction] => in [url] => ) [2549] => Array ( [z] => 2GgpJKzGng [alttag] => A 3D printed cookie cutter showing parametric measurements, four of these are glued together [titletag] => [title] => A parametrically-drawn cookie-cutter for slab built mugs [notes] => You may already know that I am very excited about the potential of 3D printing for creating aids to making pottery. I glue four of these together to create a cookie cutter for producing slab-built mugs. For different sizes of mugs I need cutters with different geometries. This is quarter-cutter and it has been drawn "parametrically" using Fusion 360. That means that certain aspects of its geometry (two lengths and one angle) can be adjusted by simply changing the parameters (in the Parameters dialog). The drawing then adjusts automatically. It is magic! Other aspects are fixed (e.g. the right-angle, the pucker-preventing hole cutouts, the height, and thickness). Parametric design is revolutionary, it fits my try-it-adjust-it-try-it-again way of working. And, I can label these printed quarters according to the size, in this case 45-25-108. [filename] => qm8r2zg7uz.jpg [path] => images/pictures/ [fullpath] => /var/www/digitalfire.com/4sight/images/pictures/ [fullurl] => https://digitalfire.com/4sight/images/pictures/ [picture_date] => 2020-06-29 13:39:58 [S3URL] => https://reference.s3.us-west-2.amazonaws.com/images/pictures/qm8r2zg7uz.jpg [S3Date] => 2020-06-29 15:09:02 [timelinephoto] => 0 [ord] => 1 [direction] => out [url] => ) [2453] => Array ( [z] => 1nfMxbqFNz [alttag] => AutoDesk Fusion 360 home page [titletag] => AutoDesk Fusion 360 home page [title] => Fusion 360, my choice for 3D modelling in ceramics [notes] => Intimidation by the complexity of this type of software is the biggest obstacle you will face to learning 3D design (for 3D-printing). Fusion 360 is the new mission of AutoDesk, the leader in CAD software for 30 years, bringing much of the power of their industrial strength Inventor product into the hands of everyone! Fusion 360 has a lot of advantages. It is a standard. There is a simple learning curve via their Tinkercad.com, videos on Youtube, easy online help and many freelancers to hire (at Upwork.com). It is free to qualifying users (teachers, students or people who earn less that $100k/yr), the fact that software of this kind of power and utility is actually available to anyone who wants to try it is amazing. Fusion 360 (and other 3D design products) cannot run 3D printers (3D slicers do that). Fusion 360 is very demanding on the processor and graphics hardware of your computer, typical laptops are not powerful enough. [filename] => zndb7eadaa.jpg [path] => images/pictures/ [fullpath] => /var/www/digitalfire.com/4sight/images/pictures/ [fullurl] => https://digitalfire.com/4sight/images/pictures/ [picture_date] => 2019-11-05 21:23:11 [S3URL] => https://reference.s3.us-west-2.amazonaws.com/images/pictures/zndb7eadaa.jpg [S3Date] => 2019-11-05 21:26:03 [timelinephoto] => 1 [ord] => 10 [direction] => out [url] => ) [2455] => Array ( [z] => E4FwnkZ3PX [alttag] => [titletag] => [title] => Fusion 360 on YouTube [notes] => Popular gurus get millions of views on their videos. Lars Christensen, Kevin Kennedy and Tyler Beck are popular contributors. Each of them has plenty of videos to teach you everything you need to know to get started designing for your ceramic production. If you get stuck, there are hundreds of places on line to go to find help. It is helpful if you know how to do a screen recording (e.g. using Screencast-o-Matic) to be able to demonstrate your problem. Getting specific answers to specific problems is a surefire way to progress in your knowledge. The first item to learn is sketching, if you can master that much of what you did will be modifying sketches (e.g. extruding, revolving, sweeping and lofting them). [filename] => 4jcknd5se4.45.26 pm.png [path] => images/pictures/ [fullpath] => /var/www/digitalfire.com/4sight/images/pictures/ [fullurl] => https://digitalfire.com/4sight/images/pictures/ [picture_date] => 2019-11-16 20:45:53 [S3URL] => https://reference.s3.us-west-2.amazonaws.com/images/pictures/4jcknd5se4.45.26%20pm.png [S3Date] => 2019-11-16 20:52:03 [timelinephoto] => 0 [ord] => 11 [direction] => out [url] => ) ) ) ) 3D Design
Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

200 mesh | 325 mesh | 3D Design | 3D Printer | 3D Printing Clay | 3D Slicer | 3D-Printing | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI in Ceramics | Alkali | Alkaline Earths | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire Foresight | Digitalfire Insight | Digitalfire Reference Library | Dimpled glaze | Dip Glazing | Dipping Glaze | Dishwasher Safe | Dolomite Matte | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Ink Jet Printing | Inside-only Glazing | Insight-Live | Iron Red Glaze | Jasper Ware | Jiggering | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Majolica | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature Glaze | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle orientation | Particle Size Distribution | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Pour Glazing | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Secondary Clay | Shino Glazes | Side Rails | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water Content | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | Wood Ash Glaze | Wood Firing | Zero3 | Zero4 | Zeta Potential

3D Design

3D Design software has revolutionized traditional ceramic manufacturing, now it is accessible to hobbyists and potters.

Key phrases linking here: fusion 360, 3d design, shapr - Learn more

Details

The biggest hurdle to adopting 3D printing is choosing and learning to use 3D design software. The processing power, multi-function mouse, connectivity and screen of a desktop computer are almost essential for this. And a desktop computer is generally needed to handle the 3D slicer software anyway. And 3D design software has decades of maturity on the desktop.

Actually, some of what I just said is being challenged, 3D is moving to the iPad. As of 2022 Shapr is taking an industry-leading modeling engine, ParaSolid (the power behind SolidWorks), to the iPad. It also runs on desktop and enables working on the same design on both platforms. It is pricey, however. In 2023 Plasticity, also built on ParaSolid, is becoming more popular, it is targeted specifically at sculpting, modelling and 3D printing. Blender is taking animation and CGI by storm as a do-it-all tool, it is unimaginably powerful yet free (the add-on ecosystem it spawns has created a profitable industry). It is certainly capable of 3D modeling if you are determined enough to learn it. Rhino is also popular in ceramic circles.

Choosing which 3D package to adopt is generally governed by what those assisting you are using (the complexity of learning this is not something to do alone). As already noted, learning a 3D design software package can be the most overwhelming part of getting into 3D printing. To prevent becoming overwhelmed it is vital to have a teacher (hire a consultant on Upwork if needed to guide you through the creation of several things). I recommend using Upwork.com to find a consultant. And Fusion 360 as the designer.

Related Information

A parametrically-drawn cookie-cutter for slab built mugs

Tap picture for full size and resolution
A 3D printed cookie cutter showing parametric measurements, four of these are glued together

You may already know that I am very excited about the potential of 3D printing for creating aids to making pottery. I glue four of these together to create a cookie cutter for producing slab-built mugs. For different sizes of mugs I need cutters with different geometries. This is quarter-cutter and it has been drawn "parametrically" using Fusion 360. That means that certain aspects of its geometry (two lengths and one angle) can be adjusted by simply changing the parameters (in the Parameters dialog). The drawing then adjusts automatically. It is magic! Other aspects are fixed (e.g. the right-angle, the pucker-preventing hole cutouts, the height, and thickness). Parametric design is revolutionary, it fits my try-it-adjust-it-try-it-again way of working. And, I can label these printed quarters according to the size, in this case 45-25-108.

Fusion 360, my choice for 3D modelling in ceramics

Tap picture for full size and resolution
AutoDesk Fusion 360 home page

Intimidation by the complexity of this type of software is the biggest obstacle you will face to learning 3D design (for 3D-printing). Fusion 360 is the new mission of AutoDesk, the leader in CAD software for 30 years, bringing much of the power of their industrial strength Inventor product into the hands of everyone! Fusion 360 has a lot of advantages. It is a standard. There is a simple learning curve via their Tinkercad.com, videos on Youtube, easy online help and many freelancers to hire (at Upwork.com). It is free to qualifying users (teachers, students or people who earn less that $100k/yr), the fact that software of this kind of power and utility is actually available to anyone who wants to try it is amazing. Fusion 360 (and other 3D design products) cannot run 3D printers (3D slicers do that). Fusion 360 is very demanding on the processor and graphics hardware of your computer, typical laptops are not powerful enough.

Fusion 360 on YouTube

Tap picture for full size and resolution

Popular gurus get millions of views on their videos. Lars Christensen, Kevin Kennedy and Tyler Beck are popular contributors. Each of them has plenty of videos to teach you everything you need to know to get started designing for your ceramic production. If you get stuck, there are hundreds of places on line to go to find help. It is helpful if you know how to do a screen recording (e.g. using Screencast-o-Matic) to be able to demonstrate your problem. Getting specific answers to specific problems is a surefire way to progress in your knowledge. The first item to learn is sketching, if you can master that much of what you did will be modifying sketches (e.g. extruding, revolving, sweeping and lofting them).

Inbound Photo Links



The Prusa Slicer generates G-Code for 3D-printing

Pyrometric cone mold
Make your own pyrometric cones? Why not!

Links

Glossary 3D Slicer
3D printing is very important in ceramics, hobby and industry. A slicer is software that slices up a 3D model and runs the printer to lay down each layer.
Glossary 3D-Printing
Standard 3D printing technology (not printing with clay itself) is very useful to potters and ceramic industry in making objects that assist and enable production.
Glossary 3D Printer
Standard 3D printers (not clay 3D printers) are incredibly useful in ceramic production and design, bringing difficult processes within reach of potters and hobbyists.
URLs https://www.omnicalculator.com/math/right-triangle-side-angle
Right triangle calculator
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk



https://digitalfire.com, All Rights Reserved
Privacy Policy