Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

BORY1 - Bory 1 Crystalline Glaze
CELECG - Celestite Crystalline Glaze
FAAO - Fa's All-Opaque Crystalline Glaze
FAC5 - Crystal Number Five Glaze
FO - Octal Crystalline Glaze
G1214M - 20x5 Cone 6 Base Glossy Glaze
G1214W - Cone 6 Transparent Base
G1214Z1 - Cone 6 Silky CaO matte base glaze
G1215U - Low Expansion Glossy Clear Cone 6
G1216L - Transparent for Cone 6 Porcelains
- Cone 6 Ultraclear Glaze for Porcelains
G1916Q - Low Fire Highly-Expansion-Adjustable Transparent
G1947U - Cone 10 Glossy transparent glaze
G2000 - LA Matte Cone 6 Matte White
G2240 - Cone 10R Classic Spodumene Matte
G2571A - Cone 10 Silky Dolomite Matte glaze
G2826R - Floating Blue Cone 5-6 Original Glaze Recipe
G2826X - Randy's Red Cone 5
g2851H - Ravenscrag Cone 6 High Calcium Matte Blue
G2853B - Cone 04 Clear Ravenscrag School Glaze
G2896 - Ravenscrag Plum Red Cone 6
G2902B - Cone 6 Crystal Glaze
G2902D - Cone 6 Crystalline Development Project
G2916F - Cone 6 Stoneware/Whiteware transparent glaze
G2926B - Cone 6 Whiteware/Porcelain transparent glaze
G2926J - Low Expansion G2926B
G2928C - Ravenscrag Silky Matte for Cone 6
G2931H - Ulexite High Expansion Zero3 Clear Glaze
G2931K - Low Fire Fritted Zero3 Transparent Glaze
G2931L - Low Expansion Low-Fire Clear
G2934 - Matte Glaze Base for Cone 6
G2934Y - Cone 6 Magnesia Matte Low LOI Version
G3806C - Cone 6 Clear Fluid-Melt transparent glaze
G3838A - Low Expansion Transparent for P300 Porcelain
G3879 - Cone 04 Transparent Low-Expansion transparent glaze
GA10-A - Alberta Slip Base Cone 10R
GA10-B - Alberta Slip Tenmoku Cone 10R
GA10-D - Alberta Slip Black Cone 10R
GA10x-A - Alberta Slip Base for cone 10 oxidation
GA6-A - Alberta Slip Cone 6 transparent honey glaze
GA6-B - Alberta Slip Cone 6 transparent honey glaze
GA6-C - Alberta Slip Floating Blue Cone 6
GA6-D - Alberta Slip Glossy Brown Cone 6
GA6-F - Alberta Slip Cone 6 Oatmeal
GA6-G - Alberta Slip Lithium Brown Cone 6
GA6-G1 - Alberta Slip Lithium Brown Cone 6 Low Expansion
GA6-H - Alberta Slip Cone 6 Black
GBCG - Generic Base Crystalline Glaze
GC106 - GC106 Base Crystalline Glaze
GR10-A - Pure Ravenscrag Slip
GR10-B - Ravenscrag Cone 10R Gloss Base
GR10-C - Ravenscrag Cone 10R Silky Talc Matte
GR10-E - Alberta Slip:Ravenscrag Cone 10R Celadon
GR10-G - Ravenscrag Cone 10 Oxidation Variegated White
GR10-J - Ravenscrag Cone 10R Dolomite Matte
GR10-J1 - Ravenscrag Cone 10R Bamboo Matte
GR10-K1 - Ravenscrag Cone 10R Tenmoku
GR10-L - Ravenscrag Iron Crystal
GR6-A - Ravenscrag Cone 6 Clear Glossy Base
GR6-B - Ravenscrag Cone 6 Variegated Light Glossy Blue
GR6-C - Ravenscrag Cone 6 White Glossy
GR6-D - Ravenscrag Cone 6 Glossy Black
GR6-E - Ravenscrag Cone 6 Raspberry Glossy
GR6-H - Ravenscrag Cone 6 Oatmeal Matte
GR6-L - Ravenscrag Cone 6 Transparent Burgundy
GR6-M - Ravenscrag Cone 6 Floating Blue
GR6-N - Ravenscrag Alberta Brilliant Cone 6 Celadon
GRNTCG - GRANITE Crystalline Glaze
L2000 - 25 Porcelain
L3341B - Alberta Slip Iron Crystal Cone 10R
L3685U - Cone 03 White Engobe Recipe
L3724F - Cone 03 Terra Cotta Stoneware
L3924C - Zero3 Porcelain Experimental
L3954B - Cone 6 Engobe (for M340)
L3954N - Cone 10R Base White Engobe Recipe for stonewares
MGBase1 - High Calcium Semimatte 1 (Mastering Glazes)
MGBase2 - High Calcium Semimatte 2 (Mastering Glazes)
MGBase3 - General Purpose Glossy Base 1 (Mastering Glazes)
MGBase4 - Glossy Base 2 Cone 6 (Mastering Glazes)
MGBase5 - Glossy Clear Liner Cone 6 (Mastering Glazes)
MGBase6 - Zinc Semimatte Glossy Base Cone 6
MGBase7 - Raspberry Cone 6 (Mastering Glazes)
MGBase8 - Waxwing Brown Cone 6 (Mastering Glazes)
MGBase9 - Waterfall Brown Cone 6 (Mastering Glazes)
TNF2CG - Tin Foil II Crystalline Glaze
VESUCG - Vesuvius Crystalline Glaze

G1216M - Cone 6 Ultraclear Glaze for Porcelains

Modified: 2022-01-30 15:58:38

Substitute for low expansion cone 6 G1215U, this sources MgO from talc instead of a frit

Material Amount
Minspar 2008.60
Ferro Frit 313423.20
Wollastonite15.20
EPK24.80
Talc4.30
Silica23.80
99.90

Notes

During 2013 we saw problems with the G1215U low expansion glossy that we had been recommending for some years. It was not melting to a completely ultra-transparent (in some cases it fired silky matte). In addition, it was not co-habiting well with cobalt (either in-glaze or under-glaze), pinholes were appearing. We are examined possible causes for this and suspected a change in the frit 3249. Formulating an alternative became necessary after efforts to identify the exact cause of the change.

It is not easy to find or create an ultra-clear glaze for cone 6. Tiny surface imperfections, boron blue milkiness, bleeding of colors and en-trained microbubbles that go unnoticed in colored and opaque glazes quickly catch the light and the attention with transparents. Even more evident is the slightest tendency to craze, because of this factor alone it may be necessary to have multiple transparent recipes for different clay bodies. Transparent glazes are by far most likely to be used on porcelains, and unfortunately, porcelains craze glazes more than stonewares. This is because they have less silica to increase the thermal expansion (higher body thermal expansion reduces crazing while lower glaze expansion does the same). But, things that reduce crazing often increase the other problems. For example, more boron melts the glaze better to give a smooth surface, and it reduces thermal expansion; but it causes clouding. Increasing MgO at the expense of Na2O reduces thermal expansion very well but also reduces the gloss. Higher silica reduces thermal expansion (usually not enough to fix a crazing problem) but it raises the melting temperature which increases surface irregularities; if you increase the boron to melt the silica, boron blue clouding appears. Zinc, as a flux, can help give a better melt, but it is hostile to some colors. Lithium carbonate as a flux causes slurry and color-conflict issues.

Since the G1215U glaze was high in MgO, it seemed obvious this needed to be cut to reduce the tendency for the glaze to matte (high magnesia is a classic way to make silky-matte glazes). Of course, this increased the thermal expansion and therefore the crazing. To lower the thermal expansion we tried a series of tests that increased the boron to improve melt fluidity and make room for more low expansion SiO2 and Al2O3 (all three are low expansion oxides). Eliminating the crazing in our lowest expansion porcelain required doubling or even tripling the amount of boron to get enough melt fluidity to dissolve the needed SiO2 and Al2O3. So we ended up going back to the original 20x5 G1214M glaze from many years ago (it is a good transparent for stonewares). We added a modest amount of MgO and a little more B2O3 (using Insight software to calculate the mix of materials to yield that chemistry). At first, we added the MgO using frit 3249 (which is expensive), but then tried using raw talc instead. Amazingly, it worked, there is no increase in micro-bubbles and it melts just as well (apparently it gases at a time during the firing where this can be tolerated). So, the resulting glaze is much less expensive.

Unexpected findings:

-This new glaze is so fluid in the kiln, it is surprising how well melted it is for a recipe having only 23% frit. It runs right clean off our melt fluidity tester.
-In comparison with the G1215U transparent that had become troublesome, this one cuts the B2O3 and cuts Al2O3 and SiO2 considerably (while maintaining their ratio). These factors should certainly increase the thermal expansion, but instead, it drops! The recipe also calculates to a significantly higher thermal expansion yet it does not craze even on our most troublesome porcelain. What are the dynamics that make it work when logic and the computer says it should not? We will continue to test to try to learn why and to see if the melting mechanism is stable through firing and material changes.
-We have not used any special purpose fluxing oxides like ZnO, Li2O or SrO, small amounts of these are often the magic behind getting glazes to fit.
-Common knowledge is that raw materials that decompose and form gases can produce too many bubbles for the melt to pass, so fritted fluxes are preferred. Not so with this glaze, it has more than 29% of materials that decompose to form gases, yet fires crystal clear.

Problems you might have:

-If you are doing over or under-glaze decoration using stains or oxides, they may bleed more than other glazes you are used to (especially with cobalt or cobalt stains). Try testing adjustments to your color medium to make it less fluid. Or use a lower percentage of stain vs medium.
-Frit 3134 can precipitate in glaze slurries (it can dissolve). We have a version of the recipe that has the same chemistry and melting behavior but employs a mix of frit 3134 and frit 3124 to source the B2O3 (but it has only 15% kaolin so may tend to powder).
-If you suspect your talc is causing microbubbles, we have a version of the recipe that has the same chemistry but employs Frit 3249 to source the MgO.
-If it crazes, you may be able to use Insight software to reduce the KNaO and replace it with some ZnO or Li2O.
-This glaze may be under too much compression if you use it with some stonewares (especially if on the inside). Use G1214M or W instead.

Please contact us with anything you discover so we can adjust this article so others can benefit from your findings.

Sept 2013: I will have an even more transparent one than this in the next few weeks. It uses the magic ingredient: A strontium frit.

Related Information


This picture has its own page with more detail, click here to see it.

G1216M transparent glaze on Plainsman M370. It is ultra clear and very well melted and does not craze on any porcelain we have tried.

Links

Recipes G1215U - Low Expansion Glossy Clear Cone 6
A recipe sourcing high MgO (from Ferro Frit 3249) to produce a low expansion glass resistant to crazing on lower silica porcelains.
Recipes G1214Z1 - Cone 6 Silky CaO matte base glaze
This glaze was born as a demonstration of how to use chemistry to convert a glossy cone 6 glaze into a matte.
Recipes G2916F - Cone 6 Stoneware/Whiteware transparent glaze
Crystal clear industrial dinnerware glaze
Recipes G1216L - Transparent for Cone 6 Porcelains
Incorporates some MgO (at the expense of CaO, KNaO) to reduce the thermal expansion of G1214M 5x20 glaze.
Glossary Boron Blue
Boron blue is a glaze fault involving the crystallization of calcium borate. It can be solved using glaze chemistry.
Articles G1214M Cone 5-7 20x5 glossy transparent glaze
This is a base transparent glaze recipe developed for cone 6. It is known as the 20x5 or 20 by 5 recipe. It is a simple 5 material at 20% each mix and it makes a good home base from which to rationalize adjustments.
Articles Bringing Out the Big Guns in Craze Control: MgO (G1215U)
MgO is the secret weapon of craze control. If your application can tolerate it you can create a cone 6 glaze of very low thermal expansion that is very resistant to crazing.

XML to Paste Into Insight-live

<?xml version="1.0"?>
<recipes version="1.0" encoding="UTF-8">
<recipe name="Cone 6 Ultraclear Glaze for Porcelains" keywords="Substitute for low expansion cone 6 G1215U, this sources MgO from talc instead of a frit" id="106" date="2022-01-30" codenum="G1216M">
<recipelines>
<recipeline material="Minspar 200" amount="8.600"/>
<recipeline material="Ferro Frit 3134" amount="23.200"/>
<recipeline material="Wollastonite" amount="15.200"/>
<recipeline material="EPK" amount="24.800"/>
<recipeline material="Talc" amount="4.300"/>
<recipeline material="Silica" amount="23.800"/>
<url url="https://digitalfire.com/recipe/106" descrip="https://digitalfire.com/recipe/106"/>
</recipelines>
<urls/>
</recipe>
</recipes>
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk

 



https://digitalfire.com, All Rights Reserved
Privacy Policy