Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

A Low Cost Tester of Glaze Melt Fluidity
A One-speed Lab or Studio Slurry Mixer
A Textbook Cone 6 Matte Glaze With Problems
Adjusting Glaze Expansion by Calculation to Solve Shivering
Alberta Slip, 20 Years of Substitution for Albany Slip
An Overview of Ceramic Stains
Are You in Control of Your Production Process?
Are Your Glazes Food Safe or are They Leachable?
Attack on Glass: Corrosion Attack Mechanisms
Ball Milling Glazes, Bodies, Engobes
Binders for Ceramic Bodies
Bringing Out the Big Guns in Craze Control: MgO (G1215U)
Ceramic Glazes Today

Ceramic Tile Clay Body Formulation
Changing Our View of Glazes
Chemistry vs. Matrix Blending to Create Glazes from Native Materials
Concentrate on One Good Glaze
Copper Red Glazes
Crazing and Bacteria: Is There a Hazard?
Crazing in Stoneware Glazes: Treating the Causes, Not the Symptoms
Creating a Non-Glaze Ceramic Slip or Engobe
Creating Your Own Budget Glaze
Crystal Glazes: Understanding the Process and Materials
Deflocculants: A Detailed Overview
Demonstrating Glaze Fit Issues to Students
Diagnosing a Casting Problem at a Sanitaryware Plant
Drying Ceramics Without Cracks
Duplicating Albany Slip
Duplicating AP Green Fireclay
Electric Hobby Kilns: What You Need to Know
Fighting the Glaze Dragon
Firing Clay Test Bars
Firing: What Happens to Ceramic Ware in a Firing Kiln
First You See It Then You Don't: Raku Glaze Stability
Fixing a glaze that does not stay in suspension
Formulating a body using clays native to your area
Formulating a Clear Glaze Compatible with Chrome-Tin Stains
Formulating a Porcelain
Formulating Ash and Native-Material Glazes
G1214M Cone 5-7 20x5 glossy transparent glaze
G1214W Cone 6 transparent glaze
G1214Z Cone 6 matte glaze
G1916M Cone 06-04 transparent glaze
Getting the Glaze Color You Want: Working With Stains
Glaze and Body Pigments and Stains in the Ceramic Tile Industry
Glaze Chemistry Basics - Formula, Analysis, Mole%, Unity
Glaze chemistry using a frit of approximate analysis
Glaze Recipes: Formulate and Make Your Own Instead
Glaze Types, Formulation and Application in the Tile Industry
Having Your Glaze Tested for Toxic Metal Release
High Gloss Glazes
Hire Me to Fix a Specific Problem
Hire Us for a 3D Printing Project
How a Material Chemical Analysis is Done
How desktop INSIGHT Deals With Unity, LOI and Formula Weight
How to Find and Test Your Own Native Clays
I have always done it this way!
Inkjet Decoration of Ceramic Tiles
Is Your Fired Ware Safe?
Leaching Cone 6 Glaze Case Study
Limit Formulas and Target Formulas
Low Budget Testing of the Raw and Fired Properties of a Glaze
Make Your Own Ball Mill Stand
Making Glaze Testing Cones
Monoporosa or Single Fired Wall Tiles
Organic Matter in Clays: Detailed Overview
Outdoor Weather Resistant Ceramics
Painting Glazes Rather Than Dipping or Spraying
Particle Size Distribution of Ceramic Powders
Porcelain Tile, Vitrified Tile
Rationalizing Conflicting Opinions About Plasticity
Ravenscrag Slip is Born
Recylcing Scrap Clay
Reducing the Firing Temperature of a Glaze From Cone 10 to 6
Simple Physical Testing of Clays
Single Fire Glazing
Soluble Salts in Minerals: Detailed Overview
Some Keys to Dealing With Firing Cracks
Stoneware Casting Body Recipes
Substituting Cornwall Stone
Super-Refined Terra Sigillata
The Chemistry, Physics and Manufacturing of Glaze Frits
The Effect of Glaze Fit on Fired Ware Strength
The Four Levels on Which to View Ceramic Glazes
The Majolica Earthenware Process
The Potter's Prayer
The Right Chemistry for a Cone 6 MgO Matte
The Trials of Being the Only Technical Person in the Club
The Whining Stops Here: A Realistic Look at Clay Bodies
Those Unlabelled Bags and Buckets
Tiles and Mosaics for Potters
Toxicity of Firebricks Used in Ovens
Trafficking in Glaze Recipes
Understanding Ceramic Materials
Understanding Ceramic Oxides
Understanding Glaze Slurry Properties
Understanding the Deflocculation Process in Slip Casting
Understanding the Terra Cotta Slip Casting Recipes In North America
Understanding Thermal Expansion in Ceramic Glazes
Unwanted Crystallization in a Cone 6 Glaze
Volcanic Ash
What Determines a Glaze's Firing Temperature?
What is a Mole, Checking Out the Mole
What is the Glaze Dragon?
Where do I start in understanding glazes?
Why Textbook Glazes Are So Difficult
Working with children

Ceramic Material Nomenclature

Description

One can look at a ceramic material from a mineral, physical or chemical standpoint. Each viewpoint is appropriate depending on the context, understanding this is a key to exploiting materials properly.

Article

Nomenclature refers to the process of naming and creating a set of terms and symbol conventions. The subject is of concern to us because there are several ways of presenting the chemistry of materials and glazes.

As we have seen, ceramic materials are made up of elements (from the periodic table we took in high school science). Their names are familiar and their symbols are well known (for example, Si is silicon and Al is aluminum). However, to satisfy electrical charges they possess, these elements oxidize (combine with atoms of oxygen) at the first opportunity (for example, the rusting of bare metal is a form of oxidation).

It is either impractical or impossible to process ceramic related metals or elements into powders because the huge surface area of a powder guarantees quick oxidation. Once a ceramic element has oxidized, it becomes stable and we cannot easily decompose it (we can't fire it high enough to get it completely apart). Some elements will take on varying numbers of oxygen molecules and these forms vary in stability. For example, the metal Fe prefers to oxidize to Fe2O3 but it will also take on the less stable forms of FeO and Fe3O4. 'Less stable' means that given the right heat, time, and atmosphere, they will convert in a kiln.

From the viewpoint of making glazes, it is convenient to consider ceramic materials as simple 'sources of oxides' although, in many cases, they do not exist as such in the raw material. We justify this by the fact that during melting two things can happen with a material to make oxides available for reorganization and rebuilding by the kiln God:

  1. During melting, materials liberate their basic oxides. Theoretical feldspar, for example, liberates K2O, Al2O3 and SiO2 for glass building in the kiln.
  2. Minerals, which lack enough oxygen in their native chemical structure, liberate basic elements, which combine with oxygen in the kiln atmosphere, and thus oxides become available for glass building. Cryolite, for example, Na3AlF6 has no oxygen at all yet during firing it can supply Na2O and Al2O3.

During normal oxidizing, firing oxides are liberated as the melt develops. When the melt is complete, the oxides reach equilibrium (they "swim around" in the fluid glaze melt undergoing no further change). We can rely on typical ceramic temperatures and atmospheres to maintain glaze melts in which oxides do not further decompose into their basic elements.

We should note that the natural state of oxides in a glaze melt can be disturbed by a reducing atmosphere: oxide molecules which expose them-selves at the surface of the melt lose some of their oxygen to oxygen-greedy CO (subsequent oxidizing can change them back).

This oxide viewpoint allows technicians to most often ignore elements which become volatile and boil away as gases during the glaze melting, and simply classify them as LOI. For example, many clay materials contain H2O in their crystal structure which is lost during the early stages of firing. The term "decomposition" is fitting for this process. For example, as gypsum is heated it passes through three discrete decomposition temperatures where water molecules are driven off.

When ceramic oxides are quickly cooled and frozen in the kiln, a glass is produced. A glass is fundamentally different than its more cantankerous cousin, the crystal. When typical glaze melts cool there is no time for molecules to arrange themselves in an orderly lattice to solidify the crystal-line structure they might prefer. This is very unlike situations in nature when rocks can cool over a period of decades or even centuries. Since glasses don't usually exhibit the volatile physical properties (i.e. expansion, phase changes) of crystalline materials, they tend to display predictable characteristics that are a compromise of the constituent oxides.

Now we can better appreciate why frits are so nice, even user friendly! They are powdered glass, not powdered crystal; they are like storehouses of oxides; they are stable, reliable, and predictable. Thus, a frit manufacturer presents them as an "inventory" of the oxides. A popular Ferro frit is offered as 46.5% SiO2 , 23.1% B2O3 , 10.3% Na2O, and 20.1% CaO.

However, raw materials must be considered from a mineralogical viewpoint. Most minerals have a well understood lattice; that is, scientists have described the geometry of their molecular structure. This structure is usually fundamental to a material's physical presence.

Corundum, sapphire, and ruby, for example, have the same chemistry, in that they are all alumina, but they have very different mineralogies and this provides the key to understanding their physical properties. When you receive a bag of raw material, it is much more than just a powdered collection of oxides like a frit. Each microscopic granule is often a crystal which duplicates on a small scale any properties that we can measure from large chunks of the material.

Thus, ceramic chemists working on the material level arrange the chemical symbols to emphasize and explain this atomic structure. Properties like hardness, sudden volume changes during heating, solubility, plasticity, and chemical changes during firing can all be rationalized in terms of the chemical structure of materials. For example, silica added to a glaze reduces its expansion, added to a body it increases the expansion. Why? Because the silica dissolves in the glaze to form low expansion silicates with other oxides and then cools to form a 'docile' glass. In the clay body, the crystals of silica mineral do not decompose but act as an aggregate (like rocks in concrete) and they impose their natural mineralogical high expansion on the fired body.

Three Ways to Look at a Material

Consider the material borax. To a materials scientist at a borax company it is Na2B4O7 · 10H2O. This format does not emphasize its chemistry, but suggests something about its mineralogical structure. Borax has an incredible number of interesting properties that make it useful for many non-ceramic purposes. The scientist seeks to explain these properties primarily in terms of its crystal structure and could use the tools in an account at insight-live.com to document the material's physical properties.

To a frit maker, borax is 16.3% Na2O, 36.5% B2O3 , and 47.2% LOI. It is simply a 'warehouse' with two oxides in stock and another inseparable one (LOI) that must be 'taken on all shipments but guaranteed to be lost during shipping'. In other words, borax supplies Na2O and B2O3 to the frit, but the LOI portion is lost during firing.

However, let us move further down the line to the glaze chemist using the frit. He sees these oxides in terms of what they will do in the final fired glaze. To him or her, the borax in the frit is Na2O · 2B2O3. He doesn't evaluate glaze properties on their crystal structure or mineralogy because they don't have one. Rather, he must evaluate fired properties based on 'oxide demographics', that is, proportions of oxide populations and their associated contributions to properties. He combines materials from many different places to source the needed oxides. He/she could well work in an account at insight-live.com, it knows the chemistry of the frit (and if it does not he can add it). He just needs to enter recipes and it will show the chemistry. By showing recipes side-by-side he can fine-tune glaze recipes to adjust any property related to chemistry.

So remember, while most materials are just white powders, there is a lot more to understanding them than meets the eye. We have to be willing to put on a variety of hats and be able to present them in a way that complements the aspect being considered. "Each microscopic granule is often a crystal which duplicates on a small scale properties we can measure from large chunks f the material."

Related Information

Links

Projects Minerals
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk



https://digitalfire.com, All Rights Reserved
Privacy Policy