1-9 | A | B | C | D | E | F | Frits | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Copper Carbonate

Alternate Names: Synthetic Malachite, CuCO3

Oxide Analysis Formula
CuO 64.40% 1.00
CO235.62%
Oxide Weight 79.54
Formula Weight 123.55

Notes

Conceptually, copper carbonate is CuCO3, however this form is not normally available in the market (copper carbonate basic is the article of commerce) so the powder should be viewed as a family of compounds.

This material is considered volatile during firing and thus can affect the color of other pieces in the firing. See Copper Carbonate Basic for more information.

Related Information

Pure cobalt carbonate and copper carbonate at 1850F

Cobalt carbonate (top) and copper carbonate (bottom). Left is the raw powder plastic-formed into a sample (with 2% veegum). Right: fired to 1850F. The CuCO3 is quickly densifying over the past 100 degrees and should begin to melt soon. It is long past the fuming stage.

LOI profiles of more common glaze and body materials

These are pure samples (with 2% binder added) of (top left to bottom right) strontium carbonate, nepheline syenite, cobalt carbonate, manganese dioxide, bentonite (in bowl), 6 Tile kaolin, New Zealand kaolin and copper carbonate. I am firing them at 50F increments from 1500F and weighing to calculate loss on ignition for each. I want to find out at what temperature they are gassing (and potentially bubble-disrupting the glaze they are in or under). Notice how the copper is fuming and spitting black specks on the shelf, this happens right around 1500F. These stains on the shelf darkened considerably when the kiln was fired higher.

Copper carbonate fuming

And example of how copper carbonate fumes during firing. The white sample on the left was near the copper sample, at around 1500F the fumes discolored its facing edge. These are permanent, they do not fire out but get darker with increasing temperature (this is 1950F). The kiln shelf was also discolored outward about half an inch from the copper specimen.

Switching copper carbonate for copper oxide in a fluid glaze

The top samples are 10 gram GBMF test balls melted down onto porcelain tiles at cone 6 (this is a high melt fluidity glaze). These balls demonstrate melt mobility and susceptibility to bubbling but also color (notice how washed out the color is for thin layers on the bottom two tiles). Both have the same chemistry but recipe 2 has been altered to improve slurry properties. Left: Original recipe with high feldspar, low clay (poor suspending) using 1.75% copper carbonate. Right: New recipe with low feldspar, higher clay (good suspending) using 1% copper oxide. The copper oxide recipe is not bubbling any less even though copper oxide does not gas. The bubbles must be coming from the kaolin.

2% Copper carbonate in two different cone 6 copper-blues

The top base glaze has just enough melt fluidity to produce a brilliant transparent (without colorant additions). However it does not have enough fluidity to pass the bubbles and heal over from the decomposition of this added copper carbonate! Why is lower glaze passing the bubbles? How can it melt better yet have 65% less boron? How can it not be crazing when the COE calculates to 7.7 (vs. 6.4)? First, it has 40% less Al2O3 and SiO2 (which normally stiffen the melt). Second, it has higher flux content that is more diversified (it adds two new ones: SrO, ZnO). That zinc is a key to why it is melting so well and why it starts melting later (enabling unimpeded gas escape until then). It also benefits from the mixed-oxide-effect, the diversity itself improves the melt. And the crazing? The ZnO obviously pushes the COE down disproportionately to its percentage.

1% and 2% copper carbonate in a cone 6 transparent

The recipe also contains 2.5% tin oxide. The clear base is the best we found to host the copper blue effect (this is actually one we recalculated to source the Al2O3 more from clay and less from feldspar to get much better slurry properties). Other base recipes are more fluid, blister more easily, the slurry does not work as well and they are not as blue. There is an Insight-live.com share to see the recipe and notes at http://insight-live.com/insight/share.php?show=ruY3muruhJ1

Almost final recipe for cone 6 copper blue - G2806B

This is the winner of a five-way cone 6 copper blue glaze comparison that started with my dissatisfaction with Panama blue. When I compared these glazes I did not just eyeball them on a tile. I compared the melt flow, thermal expansion and slurry performance of the bases (without the copper and tin). Ball-melt GBMF tests also showed bubble and color development for very thick sections. Then I tried more copper and did more flow tests. I also did leaching tests. Where needed I adjusted recipes to increase clay content (while maintaining chemistry) so the slurries would work better. Without my account at insight-live.com to keep all of this organized it would have been so much more difficult, actually, I probably would not even have bothered with the project. The final recipe, G3806C, was an adjustment to reduce the thermal expansion of this one.

Why is this glaze so different on these two different porcelains?

Why the difference? The one on the right (Plainsman M370) is made from commodity American kaolins, ball clays, feldspars and bentonite. It looks pretty white-firing until you put it beside the Polar Ice on the left (made from NZ kaolin, VeeGum plasticizer and Nepheline Syenite as the flux). These are extremely low iron content materials. M370 contains low iron compared to a stoneware (less than 0.5%) that iron interacts with this glaze to really bring out the color (although it is a little thicker application that comes nowhere near explaining this huge difference). Many glazes do not look good on super-white porcelains for this reason.

Copper fluxes a matte glaze at cone 6

4% copper carbonate and 6% rutile have been added to G2934 cone 6 matte base. Using a green stain should prevent this. Or some B2O3 could be substituted with SiO2 (via glaze chemistry).

This flow tester proves the colorant is not fluxing or bubbling the glaze

These glazes are the same (G3806G), except the one on the right has 3.5% copper carbonate added. Copper is commonly thought to flux glazes, making them melt more. But in this case, the clear base is running just as much as the stained one. And I was suspicious that the micro-bubbles in the glass matrix were coming from the copper carbonate gassing during firing. But not so, as you can see the flow on the left has them also, actually it has even more.

Links

Oxides CuO - Cupric Oxide
Articles Leaching Cone 6 Glaze Case Study
An example of how we can use INSIGHT software to determine of a glaze is likely to leach
Materials Copper Carbonate Basic
Materials Copper Oxide Black
Materials Copper Oxide Red
Materials Copper Sulfate
Materials Copper Hydroxide
Hazards Copper Oxide and Carbonate
Hazards Copper Compounds Toxicology
Suppliers Bernardy Chimie S.A.
Temperatures Copper Carbonate decomposes to CuO (290C-)
Typecodes Generic Material
Generic materials are those with no brand name. Normally they are theoretical, the chemistry portrays what a specimen would be if it had no contamination. Generic materials are helpful in educational situations where students need to study material theory (later they graduate to dealing with real world materials). They are also helpful where the chemistry of an actual material is not known. Often the accuracy of calculations is sufficient using generic materials.
Typecodes Colorant
Metallic based materials that impart fired color to glazes and bodies.
URLs http://en.wikipedia.org/wiki/Copper_Carbonate
Copper Carbonate at Wikipedia
Minerals Malachite

Data

Frit Softening Point500C D
Density (Specific Gravity)3.70
TGASee accompanying curve image

By Tony Hansen


Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address

Name

Subject

Message


Upload picture


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved