1-9 | A | B | C | D | E | F | Frits | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

3D Clay

Alternate Names: Plainsman PR#3 D

Oxide Analysis Formula
BaO 0.40% 0.02
CaO 0.20% 0.02
K2O 2.60% 0.17
MgO 0.50% 0.08
Na2O 0.10% 0.01
TiO2 0.60% 0.05
Al2O3 16.30% 1.00
SiO2 71.50% 7.44
Fe2O3 1.10% 0.04
Oxide Weight 583.84
Formula Weight 625.10

Related Information

Ravenscrag Saskatchewan clays fired at cone 10R

Glazeless (top) and with glaze (bottom): A1 (bentonitic), A2 (ball clay), A3 (stoneware), 3B (porcelains), 3C (lignitic ball clay), 3D (silt). The bottom row has also shows soluble salts (SOLU test).

IXL Industries clay quarry near Ravenscrag, Saskatchewan in 1984.

Layers of the Whitemud Formation are being mined. The layer being extracted is a silty stoneware they referred to as the "D member" (equivalent to Plainsman 3D which is mined several miles to the east). Below the D they continued to mine a much whiter kaolinized sand of equal or more thickness. Above the D is a ball clay (equivalent to Plainsman A2). Above that is a light burning stoneware (the combined layers that Plainsman extracts separately as A3 and 3B). A foot-thick layer of much harder volcanic ash is visible in the green over burden at the top. From these stoneware clays they made brick of exceptional quality, firing it as high as cone 10. Twenty years later the company reclaimed this land and today you would be unable to find where the quarry was located.

Mel Noble at Plainsman Clay's Ravenscrag, Saskatchewan quarry

Plainsman extracts 6 different sedimentary clays from this quarry (Mel knows where the layers separate). The dried test bars on the right show them (top to bottom). The range of properties exhibited is astounding. The top-most layer is the most plastic and has the most iron concretion particles (used in our most speckled reduction bodies). The bottom one is the least plastic and most silty (the base for Ravenscrag Slip). The middle two are complete buff stonewares made by mother nature (e.g. M340 and H550). A2, the second one down, is a ball clay (similar to commercial products like OM#4, Bell). A2 is refractory and the base for Plainsman Fireclay. The second from the bottom fires the whitest and is the most refractory (it is the base for H441G).

How is it possible for the same body to work well at both cone 04 and 6!

The same clay body fits glazes at low temperature and is a stoneware at medium fire. How?

Plainsman 3D! White cone 04 bodies are not vitreous and strong and neither is this. But it is plastic, smooth and fits common low fire glazes. How? 15% Nepheline Syenite (also 50% Plainsman 3D, 35% ball clay and 3% bentonite). The unmelted nepheline particles impose their higher thermal expansion on the fired ceramic. Spectrum 700 clear glaze does not craze and does not permit the entry of water (the mug is glazed across the bottom and fired on a stilt). The mug on the right is made from the same clay, it has been fired ten cones higher, cone 6! Here the nepheline is acting as a flux, producing a dense and very strong stoneware (with G2926B, GA6-B glazes). This is incredible! One note: This cannot be deflocculated and used for casting, soluble salts in the 3D gel the slurry.


Typecodes Clay Other
Clays that are not kaolins, ball clays or bentonites. For example, stoneware clays are mixtures of all of the above plus quartz, feldspar, mica and other minerals. There are also many clays that have high plasticity like bentonite but are much different mineralogically.
URLs https://plainsmanclays.com/data/index.php?product=12902
3D Data Sheet

By Tony Hansen

Tell Us How to Improve This Page

Version: Oct/2020

Or ask a question and we will alter this page to better answer it.

Email Address




Upload picture

Please check recaptcha to proceed

Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved