Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

0.8mm thickness | 200 mesh | 325 mesh | 3D Design | 3D Modeling | 3D Printer | 3D Printing Clay | 3D Slicer | 3D-Printing | 42 mesh | Abrasion Ceramics | Acidic Oxides | Agglomeration | AI at Digitalfire | AI in Ceramics | Alkali | Alkaline Earths | All-in-one case mold | Amorphous | Apparent porosity | Artware | Ball milling | Bamboo Glaze | Base Glaze | Base-Coat Dipping Glaze | Basic Oxides | Batch Recipe | Bisque | Bit Image | Black Core | Bleeding of colors | Blender Mixing | Blunging | Body Bloating | Body glaze Interface | Body Warping | Bone China | Borate | Boron Blue | Boron Frit | Borosilicate | Breaking Glaze | Brick Making | Brushing Glaze | Calcination | Calculated Thermal Expansion | Candling | Carbon Burnout | Carbon trap glazes | CAS Numbers | Casting Slip | Casting-Jiggering | Catch Glaze | Celadon Glaze | Ceramic | Ceramic Binder | Ceramic Decals | Ceramic Glaze | Ceramic Glaze Defects | Ceramic Ink | Ceramic Material | Ceramic Oxide | Ceramic Slip | Ceramic Stain | Ceramic Tile | Ceramic Transfer | Ceramics | Characterization | Chemical Analysis | Chromaticity | Clay | Clay body | Clay Body Porosity | Clay Stiffness | Clays for Construction | Clays for Ovens and Heaters | Co-efficient of Thermal Expansion | Code Numbering | Coil pottery | Colloid | Colorant | Commercial hobby brushing glazes | Cone 1 | Cone 5 | Cone 6 | Cone plaque | Content Management System | Copper Red | Cordierite Ceramics | Crackle glaze | Cristobalite | Cristobalite Inversion | CRM | Crucible | Crystalline glazes | Crystallization | Cuerda Seca | Cutlery Marking | Decomposition | Deflocculation | Deoxylidration | Differential thermal analysis | Digitalfire API | Digitalfire Foresight | Digitalfire Insight | Digitalfire Insight-Live | Digitalfire Reference Library | Digitalfire Taxonomy | Dimpled glaze | Dinnerware Safe | Dip Glazing | Dipping Glaze | Dishwasher Safe | Displacer | Do-It-Yourself | Drop-and-Soak Firing | Drying Crack | Drying Performance | Drying Shrinkage | Dunting | Dust Pressing | Earthenware | Efflorescence | Encapsulated Stain | Engobe | Eutectic | Fast Fire Glazes | Fat Glaze | FDM, SLA, SLS, MEX 3D printing technologies | Feldspar Glazes | Fining Agent | Firebrick | Fireclay | Fired Strength | Firing Schedule | Firing Shrinkage | Flameware | Flashing | Flocculation | Fluid Melt Glazes | Flux | Food Safe | Foot Ring | Forming Method | Formula Ratios | Formula Weight | Frit | Fritware | Functional | GHS Safety Data Sheets | Glass vs. Crystalline | Glass-Ceramic Glazes | Glaze Blisters | Glaze Bubbles | Glaze Chemistry | Glaze Compression | Glaze Crawling | Glaze Crazing | Glaze Durability | Glaze fit | Glaze Gelling | Glaze laydown | Glaze Layering | Glaze Mixing | Glaze Recipes | Glaze shivering | Glaze Shrinkage | Glaze thickness | Globally Harmonized Data Sheets | Glossy Glaze | Green Strength | Grog | Gunmetal glaze | High Temperature Glaze | Hot Pressing | Incised decoration | Industrial clay body | Infill and Support | Ink Jet Printing | Inside-only Glazing | Iron Red Glaze | Jasper Ware | Jiggering | JSON | Kaki | Kiln Controller | Kiln Firing | Kiln fumes | Kiln venting system | Kiln Wash | Kneading clay | Kovar Metal | Laminations | Leaching | Lead in Ceramic Glazes | Leather hard | Limit Formula | Limit Recipe | Liner Glaze | Liner Glazing | Liquid Bright Colors | LOI | Low Temperature Glaze | Magnesia Matte | Majolica | Managed Service Provider | Marbling | Material Substitution | Matte Glaze | Maturity | Maximum Density | MDT | Mechanism | Medium Temperature | Melt Fluidity | Melting Temperature | Metal Oxides | Metallic Glazes | Micro Organisms | Microwave Safe | Mineral phase | Mineralogy | Mocha glazes | Mohs Hardness | Mold Natches | Mold Shell Flange | Mole% | Monocottura | Mosaic Tile | Mottled | Mullite Crystals | Native Clay | Non Oxide Ceramics | Oil-spot glaze | Once fire glazing | Opacifier | Opacity | Ovenware | Overglaze | Oxidation Firing | Oxide Formula | Oxide Interaction | Oxide System | Particle classification | Particle orientation | Particle Size Distribution | Particle size reduction | Particle Sizes | PCE | Permeability | Phase Diagram | Phase Separation | Physical Testing | Pinholing | Plainsman Clays | Plaster Bat | Plaster table | Plasticine | Plasticity | Plucking | Porcelain | Porcelaineous Stoneware | Portable Document Format | Pour Glazing | Pour Spout | Powder Processing | Precipitation | Primary Clay | Primitive Firing | Propane | Propeller Mixer | Pugmill | Pyroceramics | Pyrometric Cone | Quartz Inversion | Raku | Reactive Glazes | Reduction Firing | Reduction Speckle | Refiring Ceramics | Refractory | Refractory Ceramic Coatings | Representative Sample | Restaurant Ware | Rheology | Rutile Blue Glazes | Salt firing | Sanitary ware | Sculpture | Search Engine Optimization | Secondary Clay | Shino Glazes | Side Rails | Sieve | Sieve Shaker | Silica:Alumina Ratio | Silk screen printing | Sintering | Slaking | Slip Casting | Slip Trailing | Slipware | Slurry | Slurry Processing | Slurry Up | Soaking | Soluble colors | Soluble Salts | Specific gravity | Splitting | Spray Glazing | Stain Medium | Stoneware | Stull Chart | Sulfate Scum | Sulfates | Surface Area | Surface Tension | Suspension | Tapper Clay | Tenmoku | Terra Cotta | Terra Sigilatta | Test Kiln | Theoretical Material | Thermal Conductivity | Thermal shock | Thermocouple | Thixotropy | Throwing | Tipping point | Tony Hansen | Toxicity | Trafficking | Translucency | Transparent Glazes | Triaxial Glaze Blending | Ultimate Particles | Underglaze | Unity Formula | Upwork | Variegation | Viscosity | Vitreous | Vitrification | Volatiles | Water Content | Water in Ceramics | Water Smoking | Water Solubility | Wedging | Whiteware | WooCommerce | Wood Ash Glaze | Wood Firing | WordPress | Zero3 | Zero4 | Zeta Potential

Calcia Matte

Calcium oxide acts as a flux and, in excess, tends to crystallize as the glaze cools. These crystallites scatter light and create a matte finish. Ca mattes form from phase separation and crystal growth (anorthite, wollastonite) during cooling, rather than surface microtexture alone.

Matte but sometimes with a softer, less velvety surface than Mg mattes.
• Often shows subtle crystal formations or a “dusty” matte look depending on cooling and silica/alumina ratios. 
• Smooth and matte — but not as silky or buttery as Mg mattes. 
• Can be more finely textured matte than gloss but usually not velvety.
• Relatively neutral on color — doesn’t push or pull color hues strongly. Can bleach or soften colors, especially with cobalt (pastel tones)


The characteristic soft satin surface can be explained in simple physical terms: A micro-wrinkle surface forms from a high viscosity, elastic melt that is too viscous and elastic to fully level on freezing. But there are additional mechanisms at play. A microstructure also develops while the melt is stiffening. That process needs time in the glass transition zone (~900–700 °C). Slow cooling stretches that zone out. Submicroscopic phase separation occurs as the glaze cools, the melt becomes less chemically comfortable holding MgO evenly dissolved in the silica-rich glass and it begins to separate into Mg-rich and an Si-rich glassy phases. These have different refractive indices and viscosities, light hits the boundaries and scatters. Fast cooling, by contrast, freezes the melt before this separation develops..

The minimum MgO level in the unity formula is typically 0.3 accompanied by high Al2O3 and a low Si:Al ratio (assuming slow cooling). For matte surfaces with faster cooling, MgO may need to be as high as 0.4 (and SiO2 lower).

At lower temperatures there is also recipe level matte mechanism with MgO. Talc, dolomite and magnesium carbonate are all refractory, their resistance to dissolving in the glaze melt can stiffen it and produce a matte surface (although not normally silky). This type of glaze falls outside of this discussion.

At stoneware temperatures, it can be tricky to produce a functional magnesia matte that resists cutlery marking, staining and leaching (one reason why my G2571A recipe is popular). The first challenge is that a viscous melt is a requirement so flux levels must be lower, this introduces the possibility of inadequate melting. Second, lower MgO and higher SiO2 favours better functionality; the more firings can be control-cooled the more these are enabled. Getting a specific surface becomes a question of whether to adapt the firing to the recipe, or the recipe to the firing.

Related Information

Calcia vs Magnesia matte - Different mechanisms


This picture has its own page with more detail, click here to see it.

This melt flow test was done at cone 6 to demonstrate the difference in melt viscosity between a calcia matte (left) and a magnesia matte (right). In simplest terms, the former depends on a fluid melt to provide the needed mobility for tiny crystals to form during cooling, those crystals scatter the light and soften the surface to give the matte effect. The latter requires a stiffer melt to help prevent leveling during cooling and host phase separation to produce a surface that scatters light.

By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk

 



https://digitalfire.com, All Rights Reserved
Privacy Policy