Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

2019 Jiggering-Casting Project of Medalta 66 Mug
Beer Bottle Master Mold via 3D Printing
Build a kiln monitoring device
Coffee Mug Slip Casting Mold via 3D Printing
Comparing the Melt Fluidity of 16 Frits
Cookie Cutting clay with 3D printed cutters
Evaluating a clay's suitability for use in pottery
Make a mold for 4-gallon stackable calciners
Make Your Own Pyrometric Cones
Making a high quality ceramic tile
Making a jigger mold for producing cereal bowls
Making a Plaster Table
Making Bricks
Making our own kilns posts using a hand extruder

Medalta Ball Pitcher Slip Casting Mold via 3D Printing
Medalta Jug Master Mold Development
Mother Nature's Porcelain - Plainsman 3B
Nursery Plant Pot
Pie-Crust Mug-Making Method
Plainsman 3D, Mother Nature's Porcelain/Stoneware
Project to Document a Shimpo Jiggering Attachment
Roll, Cut, Pull, Attach Handle-making Method
Slurry Mixing and Dewatering Your Own Clay Body
Testing a New Load of EP Kaolin
Using milk as a glaze

Making your own sieve shaker for slurries

When slurrying up a clay body, glaze or engobe it is customary to sieve it to remove both lump and particulate impurities. Sieving powders and liquids by hand is time-consuming, especially for finer mesh sieves. Of course, there are many stainless steel sieve shakers on Amazon, some handle powders and others powders or liquids. And they can cost less than $1000. However, you can also make your own for a fraction of that.

This inexpensive vibrating shaker changes that, doing in seconds what would either be very difficult or impossible by hand. We got the initial idea for this from shower-shelf.com (see links at bottom of this page).

To make the shaker described on this page access to metal fabrication skills and equipment and a 3D printer and 3D design skills are required. But since this entire website promotes independence and understanding of materials, process and equipment in the ceramic process, whether as a potter or manufacturer, we consider these resources to be essential. Even for serious hobbyists.

We made this from an inexpensive 30-watt vibration motor from Amazon (it is of excellent quality). The motor has movable weights on both ends of the shaft, rotating them enables fine control over the amount of vibration (as shipped it vibrated far too much).

We used a 3-inch length of 8 1/4 inch inside-diameter steel pipe (for use on pipelines). The motor mounts to a 1/4 inch plate welded to an upright section of 1-inch angle iron. The flange of a standard Tyler sieve measures 8" so we 3D-printed a three-piece collar that fit tightly over the end of the pipe, it holds the sieve firmly. The assembly fits into notches on a standard 5-gallon pail, by four bolts threaded into holes in the pipe.

When the vibration is right for us the bucket moves around on the floor a little when empty. If the slurry is made from 200 mesh materials, and the sieve is coarser than that and has plenty of water, it should pour through at speed. If the slurry is a clay having impurity particles and sand, it will go through quickly at first but then slow down as the oversize collects. To deal with this, pour in batches, allow the oversize to coagulate into islands, then stop and remove them before continuing. Using this method we can sieve MNP, for example, at 140 mesh very quickly, 2-5% is oversize.

Deflocculated slurries (bodies, glazes and engobes) are very difficult to sieve because they can be thick and sticky. But vibrating the sieve makes it easy. Flocculated slurries (e.g. engobes) are also much easier this way. A sieve shaker also enables processing slurries having a lower water content than would otherwise be possible.

Related Information

Make your own sieve shaker

Tap picture for full size and resolution
A home made vibrating sieve

Being more independent is now cool again. Actually, it is being forced upon us by necessity because of supply chain issues and skyrocketing prices of convenience glazes, bodies, engobes, etc. Independence involves using sieves. True, it is no problem for a potter or lab tech to manually coax a glaze slurry through a small 80# sieve. But real independence is about sieving in volume - clay bodies and casting slips. About making your own porcelains and sieving out agglomerates. The ultimate in independence: Sieving particulates from your own native clay slurries. And doing it at 100, 140 and even 200 mesh. That requires a sieve shaker. This one cost us less than $100 to make. Of course, a Tyler sieve (or similar) is needed, these can be purchased on Ebay or Amazon. And a vibration motor, some metal and hardware and a friend with metal fabrication tools.

Vibration motor on Amazon

Tap picture for full size and resolution

This is the smallest one they have and plenty big enough for this purpose. It arrived within a few days after ordering.

Drawing for sieve shaker

Tap picture for full size and resolution
Sieve shaker drawing

This is the brain-child Kirk Miller at Plainsman Clays. If you would like this 3D file in Fusion 360 and STEP formats, it is available in the Files manager in your Insight-live.com account.

Adjusting the amount of vibration is the key to utility

Tap picture for full size and resolution

The position of the weights on the shaft determines the amount of vibration. The notches in the three plates hold them in place. When adjusting the position of the plates be very careful not to get your hand caught in them when turning the motor on! Experiment with different settings to get as much vibration as your setup will tolerate without shaking the sieve out of the mount. Reinstall the protective caps as soon as possible.

3D printing collars to make the sieve fit snuggly

Tap picture for full size and resolution

This is a 140 mesh Tyler sieve. It drops into the plastic 3D printed collars and fits tightly. And the collars also need to mount tight on the pipe so everything stays secure during vibration. The collars were printed, upside down, in 110 degree sections. I created the design using Fusion 360 by drawing the cross-section profile and then dimensioning and revolving it. Typically creating these is try-adjust-print-again process to get a good fit. Remember never to wash these printed parts in hot water or they will warp.

Inbound Photo Links


Small vibrating sieve shakers
Personal size sieve shakers you can buy on Amazon

Links

Glossary Sieve Shaker
URLs https://www.youtube.com/watch?v=GUAVem7rJKs&authuser=0
Video of ingenious vibrating sieve system used for casting slip at shower-shelf.com
URLs https://www.youtube.com/watch?v=0zXfghDNxUg
ShowerShelf.com vibratory screen that fits the top of a five-gallon bucket
URLs https://www.amazon.ca/INTBUYING-Vibrating-Stainless-Machine-Electric/dp/B0CFLRV64K
110v/220v Inclined-box Linear Sifter Shaker on Amazon (for lump removal, less than $1000)
URLs https://www.amazon.ca/Automatic-Vibrating-Stainless-Screening-Particles/dp/B0C1ZGPMRL
110v/50w 40/60 mesh 30cm dia Sieve Shaker for Powders on Amazon (less than $1000)
URLs https://www.amazon.ca/YUCHENGTECH-Industrial-Vibrating-Particles-Screening/dp/B082KRYCJG
220V 50W Industrial Vibrating Sieve Machine for powders/liquids (to 500 mesh) on Amazon (less than $3000).
URLs https://www.amazon.ca/INTBUYING-Stainless-Ultra-high-Efficiency-Metallurgy/dp/B098SRHQ8P
208V 60HZ Triphase 1500W Powder/liquid Three-layer Stainless Steel Vibrating Sieving Machine (less than $5000)
By Tony Hansen
Follow me on

Got a Question?

Buy me a coffee and we can talk



https://digitalfire.com, All Rights Reserved
Privacy Policy