Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!

Alumina Toxicology | Ammonia and Latex Toxicity | Antimony Oxide | Are colored porcelains hazardous? | Arsenic Oxide | Asbestos: A Difficult-to-Repace Material | Ball Clay | BARIUM and COMPOUNDS / Toxicology | Barium Carbonate | Bentonite Toxicity | Beryllium Monoxide Toxicology | Bismuth Trioxide Toxicology | Boron Compounds and Their Toxicity | Brown Stain | Cadmium Toxicity | Calcium Carbonate Toxicology | Carbon Monoxide Toxicity | Cesium Toxicology | Chromium Compounds Toxicology | Clay Toxicity | Cobalt Oxide and Carbonate | Cobalt Toxicology | Copper Compounds Toxicology | Copper Oxide and Carbonate | Cristobalite Toxicity | Cryolite and Ceramics | Dealing With Dust in Ceramics | Diatomaceous Earth Toxicology | Dioxins in Clays | Epsom Salts | Eye Injuries Due to Radiation | Feldspar | Fighting Micro-Organisms in Ceramics | Fluorine Gas | Gallium Oxide Toxicology | Hafnium Oxide Toxicty | Hydrofluoric Acid Toxicity | Iron oxide and Hematite | Lead Chromate | Lead in Ceramic Glazes | Lead Toxicology | Lithium Carbonate Toxicity | Lithium Toxicology | Man-Made Vitreous Fibers (MMVF) Toxicology | Man-Made Vitreous Fibers Safety Update | Manganese and Parkinsons by Jane Watkins | Manganese in Clay Bodies | Manganese Inorganic Compounds Toxicology | Manganese Toxicity by Elke Blodgett | Manganese: Creativity and Illness by Dierdre O'Reilly | Molybdenum Compounds Toxicology | Nickel Compounds Toxicity | Niobium Oxide Toxicity | Occupational Dermatoses | Overview of Material Safety by Gavin Stairs | Paraffin Toxicology | Perlite Toxicity | Plant Ash Toxicity | Potassium Carbonate Toxicity | Pregnancy and Ceramics | Propane Toxicology | Quartz Toxicity | Quartz Toxicity on Clayart | Rare Earth Compounds Toxicity | Rubidium and Cesium Toxicology | Rutile Toxicology | Silicosis and Screening | Silver Compounds Toxicology | Sodium Azide Toxicology | Sodium Carbonate Toxicology | Sodium Silicate Powder Toxicology | Stannous Chloride Toxicity | | Sulfur Dioxide Toxicity | Talc Hazards Overview | Talc Toxicology | Thallium Oxide Toxicology | The Use of Barium in Clay Bodies | Thorium Dioxide Toxicity | Tin Inorganic Compounds | Titanium Dioxide Toxicology | Toxicological Assessment of Zeolites | Tungsten Compounds Toxicology | Understanding Acronyms on MSDS's | Uranium and Ceramics | Vanadium and Compounds Toxicology | Vermiculite | Zinc Compounds Toxicology | Zirconium Compounds Toxicity | Zirconium Encapsulated Stains Toxicity

Strontium Carbonate Toxicity Note

The greatest danger to humans is from artificial isotopes 89Sr and 90Sr produced in nuclear reactions; fallout of 90 Sr mainly from atmospheric nuclear explosions (and power-plant reactor accidents) has caused great concern. These isotopes are deposited in bones, acting as a source of internal radiation. The 90 Sr has a half-life of 28 years and emits beta particles that damage the blood forming cells in the bone marrow.

Obviously, as can be seen, this is not the case of strontium carbonate.


By Edouard Bastarache

Related Information

Links

Materials Strontium Carbonate
A pure source of SrO for ceramic glazes. It contains 70% SrO and has an LOI of 30% (released as CO2 during firing).
URLs http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/_icsc16/icsc1695.htm
Strontium Carbonate Hazars at ilo.org
Typecodes Article by Edouard Bastarache
Edouard Bastarache is a well known doctor that has written many articles on the subject of toxicity of ceramic materials and books on technical aspects of ceramics. He writes in both English and French.

Got a Question?

Buy me a coffee and we can talk

 



https://digitalfire.com, All Rights Reserved
Privacy Policy