Alumina Toxicology | Ammonia and Latex Toxicity | Antimony Oxide | Arsenic Oxide | Asbestos: A Difficult-to-Repace Material | Ball Clay | BARIUM and COMPOUNDS / Toxicology | Barium Carbonate | Bentonite Toxicity | Beryllium Monoxide Toxicology | Bismuth Trioxide Toxicology | Boron Compounds and Their Toxicity | Brown Stain | Cadmium Toxicity | Calcium Carbonate Toxicology | Carbon Monoxide Toxicity | Cesium Toxicology | Chromium Compounds Toxicology | Cobalt Oxide and Carbonate | Cobalt Toxicology | Copper Compounds Toxicology | Copper Oxide and Carbonate | Cristobalite Toxicity | Cryolite and Ceramics | Dealing With Dust in Ceramics | Diatomaceous Earth Toxicology | Dioxins in Clays | Epsom Salts | Eye Injuries Due to Radiation | Feldspar | Fighting Micro-Organisms in Ceramics | | Gallium Oxide Toxicology | Hafnium Oxide Toxicty | Hydrofluoric Acid Toxicity | Iron oxide and Hematite | Kaolin Toxicity | Lead Chromate | Lead in Ceramic Glazes: What Did We Learn? | Lead in Frits: The Hazards | Lead Toxicology | Lithium Carbonate Toxicity | Lithium Toxicology | Man-Made Vitreous Fibers (MMVF) Toxicology | Manganese and Parkinsons by Jane Watkins | Manganese in Clay Bodies | Manganese Inorganic Compounds Toxicology | Manganese Toxicity by Elke Blodgett | Manganese: Creativity and Illness by Dierdre O'Reilly | Molybdenum Compounds Toxicology | Nickel Compounds Toxicity | Niobium Oxide Toxicity | Occupational Dermatoses | Overview of Material Safety by Gavin Stairs | Paraffin Toxicology | Perlite Toxicity | Plant Ash Toxicity | Potassium Carbonate Toxicity | Pregnancy and Ceramics | Propane Toxicology | Quartz Toxicity | Quartz Toxicity on Clayart | Rare Earth Compounds Toxicity | Rubidium and Cesium Toxicology | Rutile Toxicology | Silicosis and Screening | Silver Compounds Toxicology | Sodium Azide Toxicology | Sodium Carbonate Toxicology | Sodium Silicate Powder Toxicology | Stannous Chloride Toxicity | Strontium Carbonate Toxicity Note | Sulfur Dioxide Toxicity | Talc Hazards Overview | Talc Toxicology | Thallium Oxide Toxicology | The Use of Barium in Clay Bodies | Thorium Dioxide Toxicity | Tin Inorganic Compounds | Titanium Dioxide Toxicology | Toxicological Assessment of Zeolites | Tungsten Compounds Toxicology | Understanding Acronyms on MSDS's | Uranium and Ceramics | Vanadium and Compounds Toxicology | Zinc Compounds Toxicology | Zirconium Compounds Toxicity | Zirconium Encapsulated Stains Toxicity

Fluorine Gas

Various material used in ceramics can generate fluorine gas during firing. This gas in hazardous, for example ILO says: Avoid all contact and in all cases contact a doctor.

For example, fluorspar contains alot of fluorine has a TLV (threshold limit value) of 2.5 milligrams per cubic meter of air breathed. By comparison iron oxide is considered a safe-to-use material at 5.0, kaolin is 2.0, barium carbonate is 0.5, quartz is 0.1-0.05.

Cryolite also contains a very large amount of fluorine and thus poses a specific hazard. Even Cornwall Stone, a widely used glaze material, can contain up to 2%.

Good kiln ventilation is essential. Over a period of time, fluorine gas will even etch windows in the kiln area until they are opaque like frosted glass. This is ample evidence of its presence.

Related Information

Links

Materials Fluorspar
Materials Cryolite
Materials Cornwall Stone
Materials Petalite
URLs http://www.ilo.org/public/english/protection/safework/cis/products/icsc/dtasht/_icsc00/icsc0046.htm
Fluorine Hazards at ilo.org
URLs http://en.wikipedia.org/wiki/Fluorine
Fluorine at Wikipedia

By Tony Hansen


Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address

Name

Subject

Message


Upload picture


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved