Click here for information about DIGITALFIRE Corporation

Monthly Tech-Tip from Tony Hansen

I will send practical posts like these (from thousands I maintain). No ads or tracking. We are troubleshooting the confirm email, for now you will be subscribed immediately (the first monthly email will provide one-click unsubscribe).


Blog

Why are rutile blue glazes susceptible to this blistering problem?

Rutile glaze has blistered

This blistering problem is common in high-temperature rutile blue glazes. The reason relates to what it takes to create this kind of vibrant variegated aesthetic: Melting the crap out of the glaze and cooling it just right. This particular one is being fired to cone 11 down to get enough melt fluidity to make it crystallize and phase separate. It seems logical that if the glaze is melting so well it should be able to heal any bubbles that form and break (these are more than usual because the body is being overfired and generating gases). However, the fluidity comes with surface tension that can hold the bubbles intact. Each of these holes in the glaze is a product of that - plus another factor: Cooldown is rapid enough that the melt is not sufficiently fluid to heal after bubble breakage. The potter has been using this glaze for many years with success, but a small change in process or materials has occurred to push it past a tipping point. Solutions? A drop and hold firing. Add a flux (e.g. a little lithium or a frit) to make it melt fluid at cone 10R (where the body generates less gasses of decomposition). Replace any high LOI materials in the glaze itself with other materials to source the same oxides.

Context: Rutile Blue Glazes, Glaze Blisters

Tuesday 14th May 2024

Why 3D design and printing is a better way to make slip casting molds

3D printed plaster mold master

I have not made molds for years because I dread the process, the mess, all the supplies and tools. I am not a mold-making expert either, but I found a way to do it that is fun, rewarding and effective.
-I am wasting less plaster (it is not a green material). And PLA filament is corn starch or sugar cane. And I am not using rubber.
-I spend most time on design, pouring the plaster takes minutes.
-Many fewer tools are needed, the process is less messy.
-No natches make sanding of flat mating faces possible (for better seams than I've ever had).
-No spare is needed, the 3D-printed pour spouts works better.
-More shapes are possible.
-My molds aren't right until at least version 3. 3D makes do-overs or changes in design as easy as a reprint and plaster pour. I can make a mold just to test an idea!

Context: Beer Bottle Master Mold..

Sunday 5th May 2024

Drying cracks in bricks - but no data to determine best response

Bricks cracking during drying

These bricks were being extruded in India and the plant was suffering drying cracks. A consultant recommended a high percentage addition of lignosulphonate, at a cost of $800/ton, as a solution. But before adding such a large expense, some obvious changes seemed in order first. The technician knew the plasticity index of the clay (a measurement used for soils) but he did not have records of its drying shrinkage, water permeability, drying strength or drying performance - when problems like this arise such data provides direction and help answer questions. For example, is cracking happening because of lack of drying strength or plasticity or because drying shrinkage is too high. The splitting along the corner of the extrusion is a clue that plasticity could be lacking - that could be solved by a small bentonite addition or reduction in grog. If permeability is low an increase in grog might be needed (if the pugmill can still extrude slugs with a smooth edge and corner). Notice the cracks that start from those splits (lower left). But also notice how the top edge has shrunk while the center section has not. That indicates the drying process is not tuned to subject all surfaces to equal airflow (sure enough, these are being dried outside in the sun and wind). Another factor is cross-section: The round holes create variations in thickness that exceed 300%, square holes with rounded corners would be better. Given the location, economic realities and past success this one change might be enough to make a big difference.

Context: Simple Physical Testing of.., Bricks and tiles are.., Clay lab report Is.., Physical Testing, Cracking of Clays During..

Tuesday 30th April 2024

Polar Ice slip-cast mug owes its wonkiness to Veegum

Polar ice slip cast mugs

This is possible because Polar Ice, the casting version, behaves like rubber after draining. The rims can be peeled away from the mold and the piece can be completely collapsed to forcibly peel it out of the mold. They could then be opened and dried. To add more insult to the wonky shape large pieces can be broken away at leather-hard stage and then reattached using the slip as glue - the piece will still dry normally! The 1% Veegum is solely responsible for all of this, without it the New Zealand kaolin based slip would be too fragile to even cast this.

Context: First mug in my..

Tuesday 23rd April 2024

At what point is a self-supporting cone bent to the correct degree?

A self supporting cone in an Orton guide

Orton says “90 angular degrees is considered the endpoint of cone bending”. First, let's assume the normal: Examination of cones on kiln-opening to verify controller operation. Consider the cone on the left: The tip is touching. But it is also beginning to buckle, which means it was touching for a while before the firing ended. Who knows how long! The second one is not touching but has still fallen a little too far. Why do we say that? The third one, positioned on the Orton guide, has reached the recommended 90 degrees. This demonstrates a good reason why self-supporting cones are much better than standard ones: They are not touching when considered done. And standard cones, when sent in a 3/4" plaque, have a less consistent bending behaviour.

Context: The bending of an.., Cones bending badly, Are you using your.., Manually programming a Bartlett.., What temperature do Orton.., Program your firings manually.., Cones bending theoretically cones.., Pyrometric Cone, Make Your Own Pyrometric..

Saturday 20th April 2024

This iron oxide stain on porcelain disappeared during firing?

Iron stain porcelain fires clean

This porcelain is 43% kaolin, 20% silica, 36% nepheline syenite and 1% Veegum. I cast it in a test mold that had been used for a very dark red burning body. The inner unstained section looks no different than the outside after firing to cone 6. This porcelain develops a vitreous surface, it is apparently able to dissolve and absorb the thin film of iron (unlike a stoneware). Kaolins in even very white burning porcelains always contain a small percentage of iron oxide as a contaminant, but as long as it is below about ~0.5% the fired color is not visibly darkened.

Context: This is how much..

Wednesday 17th April 2024

First mug in my newly created mold

Slip cast mug

This test mold is thin-walled yet I can cast three thick-walled mugs in three hours. This clay is L2596G, a buff burning cone 10 stoneware - the mug on the lower right has been fired to cone 10 oxidation. Achieving 4-5mm thick walls is not a problem if the casting slip employs a large particle kaolin intended for this purpose (e.g. Opticast). The flared lip works as expected, keeping the rim nice and round. No cracks have appeared at handle joins, even for pieces left in the mold overnight. The mold halves mate with each other very well and the seam is easy to remove. The seam on the base is an issue - I have to be careful to line up the halves well before clamping the mold strap - this is a warning for accuracy during the mold production stage. And the possible motive for a three-piece mold if I get more serious about this piece.

Context: AI-Imagined mug I chose.., Polar Ice slip-cast mug.., Coffee Mug Slip Casting..

Wednesday 10th April 2024

Personal size sieve shakers you can buy on Amazon

Small vibrating sieve shakers

These are small-scale devices that work on the same principles as industrial ones - thus they put industrial methods of clay processing in the hands of a potter or hobbyist. These products are stainless steel and food grade and most can be used with powders or shurries and have interchangeable screens. The most expensive device here costs $5000 and the least expensive is far less than $1000. The suppliers of each of these also have other similar machines (as well as other types of processing equipment potentially valuable in small-scale ceramic production).

Context: How to Find and.., Formulating a body using.., 11 v 22 v.., 11 v 5 w.., 22 V 5 W.., 2 8V 6 HZ.., Making your own sieve..

Sunday 24th March 2024

3D printed plaster filled case mold ready for pouring block mold

3D printed mug mold

This is part of a project to make a slip-casting mold for a coffee mug. In the slicer, I split the print into two pieces 22mm up from the base. This enabled doing the bottom section right side up and the top one upside down. That drastically cut the amount of support generated (and thus printing time). I scotch-taped the two halves together and filled it with plaster to produce a rigid block mold. The two halves fit so precisely it is difficult to tell where they join. The big benefit of printing it upright like this is that the all-important front face is very flat (there is some warpage on other parts but that does not matter).

Context: Coffee Mug Slip Casting..

Wednesday 20th March 2024

3D design, printing and use of a slip clay test bar mold

SHAB mold for casting clays

This is for making test bars of slip casting clays bodies for use in the SHAB test (to measure drying shrinkage, firing shrinkage and fired porosity). I designed it in Fusion 360 and 3D printed the light-duty rails and case mold. I poured plaster into that to make the two plaster working mold halves (top right). The funnels provide a reservoir so the bars be cast solid. This mold can produce a set of three bars in less than an hour.

Context: Shrinkage/Absorption Test, Side Rails

Tuesday 19th March 2024

Contact Me

Use the contact form at the bottom on almost all the pages on this site or let's have a together.

Other ways to Support My Work

Subscribe to Insight-Live.com. It is about doing testing and development, not letting the information slip away. Starts at $15 for 6 months.

Tony Hansen
Follow me on

Test, Document, Learn, Repeat in your account at insight-live.com

Login to your online account

Chemistry plus physics. Maintain your recipes, test results, firing schedules, pictures, materials, projects, etc. Access your data from any connected device. Import desktop Insight data (and of other products). Group accounts for industry and education. Private accounts for potters. Get started.

Conquer the Glaze Dragon With Digitalfire Reference info and software

Download for Mac, PC, Linux

Interactive glaze chemistry for the desktop. Free (no longer in development but still maintained, M1 Mac version now available). Download here or in the Files panel within your Insight-live.com account.


What people have said about Digitalfire

  • Nice to know you are out there to lend us a hand. You are very much appreciated by this potter and many more, I am sure.
  • I must say that your article on geting pink colors from Chrome and Tin had an appealing writing style and was very informative.
  • I have been perusing through some of the level 2 areas of your site and am just in awe of what a great resource you have developed.
  • I've been reading your entire book on the Glaze Dragon - I'm only at page 77 but I feel much more knowlegeable about glazes and I can't wait until I gained the experience from making and firing glazes so I will have the ability to nail down the mechanism of a glaze effect and bring those mechanisms at will into any glaze I make... I will stick to one glaze or two that I can adjust rather driving myself crazy with hundreds of glazes...
  • I am so glad I found your site, I have been looking for a site with this type of good information.
  • Great resource!!!
  • In the meantime I downloaded the book. It was an interesting reading without any stop. That was exactly what I was looking for. I will start my work after my summer vacation and see what I will be able to achieve. Based on the given information I hope to be able to create something.

What people have said about Insight-Live

  • I have found your website to be extremely helpful because of your analysis of glaze chemistry and other information too. I have been able to mix all my own glazes and troubleshoot with the information you provide. I want you to know how much you're helping fellow potters all over the country and I truly appreciate your generosity in sharing the information.
  • Your site is a crucially important one, and I'm happy to help you, even in small ways.
  • What would we do without you?!??!
  • Having explored and taken lots of advice from your site, I just wanted to say what a brilliant and informative site it is.
  • On a small aside. I want to thank you for all the work you have done over the years, firstly to inspire people like myself to see the technical side of ceramics as such a beautiful side of the art and not just a finished result that was lucky. And on that note with how much I read your blog, waiting for daily posts, reading all the old articles again and again, I see your mugs with the wheat grass on them all time, and was wondering if you ever put them up for sale. It's been an icon of my learning and would love to have one of the infamous mugs themselves.
  • A short, but comprehensive description with lots of needful information like yours is rarely to be found in the internet. Bravo!
  • Thank ou for this website! Your information is incredibly valuable. It is the Crown Jewel of the Online Pottery community.



https://digitalfire.com, All Rights Reserved
Privacy Policy

1