1-9 | A | B | C | D | E | F | Frits | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Fusion Frit F-15

Alternate Names: Fusion Frit F15

Oxide Analysis Formula
K2O 3.60% 0.48
Na2O 2.60% 0.52
B2O3 23.00% 4.12
Al2O3 3.80% 0.46
SiO2 67.00% 13.91
Oxide Weight 1,247.63
Formula Weight 1,247.63

Related Information

Melt fluidity comparison of frits - 1650F

Fired at 350F/hr to 1650F and held for 15 minutes. FZ16 has turned crystal clear and spread out across the runway (has low surface tension). Frit 3110 has so much surface tension that the flow can be lifted off the tester. Since 1600F Gerstley Borate has gone from unmelted to passing all the rest!

Melt fluidity comparison of frits - 1550F

Fired at 350F/hr to 1550F and held for 15 minutes. Frit 3134 is still expanding. 3602 and FZ16 are going to be off-ramp by next firing.

Melt fluidity comparison of frits - 1500F

Fired at 350F/hr to 1500F and held for 15 minutes. Frit 3134 is still expanding. 3602 and FZ16 are really starting to move. 3195, F38 and F15 are softening.

Melt fluidity comparison of frits - 1450F

Fired at 350F/hr to 1450F and held for 15 minutes. Frit 3134 is still expanding. 3602 is blasting out of the gate, taking the lead. F75 is starting to flow.

Melt fluidity comparison of frits - 1400F

Fired at 350F/hr to 1400F and held for 15 minutes. Frit 3134 is still expanding. 3602 is also starting to flow. A number of them are shrinking and densifying like a porcelain would.

Melt fluidity comparison of frits - 1350F

Fired at 350F/hr to 1350F and held for 15 minutes. Some are still burning off carbon (which seems strange). The two FZ16s are starting to move. Frit 3134 is expanding. 3602 is also starting to melt.

Frit melt fluidity comparison - 1300F

Fired at 350F/hr to 1300F and held for 15 minutes. Some are still burning off carbon (which seems strange). There are two early leaders: Ferro frit 3110 and Fusion frit F75 are starting to deform (they have almost the same chemistry). Amazingly, these two frits have low boron, they rely on high soda as the flux.

Frit Melt Fluidity Comparison - 1800F

Fired at 350F/hr to 1800F and held for 15 minutes (I already did firings from 1300F-1750F in 50 degree increments, all of them are visible in the parent project). Frit 3110, 3134, 3195, F75 have run all the way down. All of the frits have softened and melted slowly over a range of temperatures (hundreds of degrees). By contrast, Gerstley Borate, the only raw material here, suddenly melted and flowed right over the cliff (between 1600 and1650)! But not before Frit 3602 and FZ16 had done so earlier. Frit 3249 is just starting to soften but F69 (the Fusion Frits equivalent) is a little ahead of it. LA300 and Frit 3124 are starting also. F524, F38, F15 will all be over the end by the next firing. The melt surface tension is evident by the way in which the melts spread out or hold together.

Various frits fired at 1850F

16 GBMF tests on a slab of grogged clay. Kiln fired at 108F/hr for last 100 degrees F and held for 15 minutes.

Frits fired to 2050F

These are higher temperature frits. 10 gram balls were melted on to this tile.

Various frits fired at 1950F

16 GBMF tests on a slab of grogged clay. Kiln fired at 108F/hr for last 100 degrees F and held for 15 minutes.

1700F Frit Melt-Off: Who is the winner? Not the lead bisilicate!

Melted balls of 15 frits on a ceramic tile

These were 10g balls melted using our GBMF test. Frit 3602 is lead bisilicate. But it got "smoked" by the Fusion FZ-16 high-zinc, high-boron zero-alumina! Maybe you always thought lead was the best melter. That it produced the most transparent, crystal clear glass. But that is not what we see here. Notice something else: Each frit has a melt-fingerprint. When two are similar we can see it immediately.

Melt fluidity comparison of frits - 1700F

Fired at 350F/hr to 1700F and held for 15 minutes. 3110 is finally starting to move. 3134 also (being full of bubbles). Gerstley Borate has turned almost transparent. 3195 is looking very well behaved compared to most others, forming a bubble free glass of high surface tension (F15 and F524 are starting to do the same).

Links

Materials Fusion Frit F-524
Materials Frit
Typecodes Frit
Suppliers Fusion Ceramics Inc

Data

Co-efficient of Linear Expansion4.42
Frit Softening Point1675F

By Tony Hansen


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved