BaO | Bi2O3 | CaO | K2O | Li2O | MgO | Na2O | PbO | SrO | ZnO

SnO2 | TiO2 | ZrO2

CoO | Cr2O3 | CuO | Fe2O3 | FeO | MnO | Ni2O3 | V2O5

C | Cl | CO | CO2 | H2O | LOI | O | Organics | SO3 | SO4

Ag2O | AlF3 | As2O3 | As4O6 | Au2O3 | BaF2 | BeO | CaF2 | CdO | CeO2 | CrO3 | Cs2O | Cu2O | CuCO3 | Dy2O3 | Er2O3 | Eu2O3 | F | Fr2O | Free SiO2 | Ga2O3 | GdO3 | GeO2 | HfO2 | HgO | Ho2O3 | In2O3 | IrO2 | KF | KNaO | La2O3 | Lu2O3 | Mn2O3 | MnO2 | MoO3 | N2O5 | NaF | Nb2O5 | Nd2O3 | NiO | OsO2 | P2O5 | Pa2O5 | PbF2 | PdO | PmO3 | PO4 | Pr2O3 | PrO2 | PtO2 | RaO | Rb2O | Re2O7 | RhO3 | RuO2 | Sb2O3 | Sb2O5 | Sc2O3 | Se | SeO2 | Sm2O3 | Ta2O5 | Tb2O3 | Tc2O7 | ThO2 | Tl2O | Tm2O3 | U3O8 | UO2 | WO3 | Y2O3 | Yb2O3 | ZrO

ZrO (Zirconium Oxide, Zirconia)

•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

FamilyOpacifier
Weight107.200
COLE - Co-efficient of Linear Expansion 0.020

Zirconia has an inversion with an associated 3% expansion/contraction.

Mechanisms

Ceramic Oxide Periodic Table

Ceramic Oxide Periodic Table

All common traditional ceramic base glazes are made from only a dozen elements (plus oxygen). Materials decompose when glazes melt, sourcing these elements in oxide form. The kiln builds the glaze from these, it does not care what material sources what oxide (assuming, of course, that all materials do melt or dissolve completely into the melt to release those oxides). Each of these oxides contributes specific properties to the glass. So, you can look at a formula and make a good prediction of the properties of the fired glaze. And know what specific oxide to increase or decrease to move a property in a given direction (e.g. melting behavior, hardness, durability, thermal expansion, color, gloss, crystallization). And know about how they interact (affecting each other). This is powerful. And it is simpler than looking at glazes as recipes of hundreds of different materials (each sources multiple oxides so adjusting it affects multiple properties).

Out Bound Links

In Bound Links


By Tony Hansen



Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved
*