•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Dry Strenth (Round Bars) - DSRN

This test procedure was employed in the Foresight Ceramic Database and now is available for those having an account at Insight-Live.com. Accumulating test data using the variables defined in these procedures enables us to create tools that enable you to compare the physical properties of materials and recipes.

Notes

We have not included procedural records for this definition. See the CDRY and SAWL test for examples.

In industry, where articles are handled by machines, it is important to have high green strength. Potters likewise benefit from high green strength by being able to glaze in the dry state and make thinner ware that will withstand handling. In addition, high green strength is a side effect of high plasticity that is desirable from a working point of view, but undesireable from a drying properties point of view.

As stated, dry strength is most closely related to plasticity. Highly plastic clays are strong. The distribution of particle sizes and shapes, their orientation, and the density of dry ware are also factors. The existense of stresses and cracks within test bars can make it impossible to measure an accurate breaking force. These stresses occur in very plastic materials (i.e. ball clays). In these situations, the clay must be blended with an extender like flint to cut the plasticity. These strength measurements are not absolute, but relative to similarly treated materials.

It is also very important to prepare the test bars using a method than does not build in laminiations or particle orientations that weaken the test bar (characteristic of hand-worked samples). It is typical to extrude round bars from a deairing lab pugmill to produce samples that will yield a consistent strength figure. 25 mm dia x 10 cm long extruded bars can be broken on a 7.5 cm span in standard device that records the force necessary to do so. Six to eight bars should be done, and the resulting data can be averaged and substituted into a formula in order to derive the pounds per square inch of dry strength.

Using the above conventions, a typical raw stoneware clay will have a dry strength of 800-1500 for round extruded bars (square bars measure less). Bodies made from refined materials (i.e. whiteware bodies) will measure 500-900.

Variables

BSP - Breaking Span (V)

Enter in inches the span at which the strength testing device is set, that is, the distance between the two points on which the bar rests.

FOR - Force (V)

Enter the force necessary to break the bar.

DIA - Diameter (V)

Enter the diameter of the bar at the point of the break in inches.

STRV - Calculated Value (V)

This is a calculated item to derive dry strength. The formula is:

M = 8 x P x L / Pi x (dxdxd)

Where P = Force in lbs
L = Span in inches
d = Diameter of bar at break

NUM - Number Broken (V)

Enter the number of bars which were broken and averaged to yeild the figures entered in the other fields.

Fired strength tester

Fired strength tester

Round or square fired bars are subject to a force that tests their tensile strength. The strength can be calculated from the force and the dimensions of the cross section where the break occurred.

Out Bound Links

  • (Tests) CDRY - Drying Factor/Water Content/Solubles
  • (Tests) SHAB - Shrinkage/Absorption Test
  • (Typecodes) 5: BDT - Body Tests

In Bound Links

  • (Articles) The Physics of Clay Bodies

    Learn to test your clay bodies and recording the results in an organized way and understanding the purpose of each test and how to relate its results to changes that need to be made in process and recipe.

  • (Tests) DS - Dry Strength (kgf/cm2)
  • (Tests) DSTR - Dry Strength (Square Bars)

By Tony Hansen




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved