The secret to cool bodies and glazes is alot of testing. But how will you be able to learn from that testing without a good place to store the recipes? Document the successes and failures? Do it in your account at https://insight-live.com.

Alberta Slip Cone 6 Amber Base Glaze

Code: GA6-A
Modification Date: 2017-06-16 16:16:22
Member of Group: AS6

An amber-colored transparent glaze that works better on brown and red burning stonewares than typical transparent glazes.

MaterialAmount
Alberta Slip Calcined40.0
Alberta Slip40.0
Ferro Frit 313420.0
 100.00  

Firing Schedule

Rate (F)Temp (F)Hold (Min)Step
100220601
300173302
1082175153
1502075304

Notes

This is the base cone 6 Alberta Slip recipe, it fires as a transparent amber glass. This is an excellent base glaze for many dark colors. It is also an excellent liner glaze for dark-burning clays (it looks better than a transparent) and amber glossy for light-burning clays.

If crazing occurs (you need to look closely for it) switch to frit 3195 or 3249 (however these frits may not react the same with colorants, especially the rutile blue).

In our lab we can make 1 Canadian gallon using a mix of 2700 water and 3000 dry (1200 Alberta Slip, 1200 Calcined Alberta Slip, 600 Frit). This produces a specific gravity of 1.45 at about the right viscosity for dipping. We add a 1-2 grams of Epsom Salts to this to gel the slurry a little for better application properties. A 1-2 second dip in 1850F bisque ware produces the right thickness. You can use alot less water and it will still be fluid, but it will go on too thick and cracking will occur.

'; ?>

Calcining Alberta Slip

Calcined Alberta Slip (right) and raw powder (left). These are just 5 inch cast bowls, I fire them to cone 020 and hold it for 30 minutes. Why calcine? Because for glazes having 50% or more Alberta Slip, cracking on drying can occur, especially if it is applied thick (Alberta Slip is a clay, it shrinks). I mix 50:50 raw:calcine for use in recipes. However, Alberta Slip has an LOI of 9%, so I need to use 9% less of the calcine powder (just multiply the amount by 0.91). Suppose, I needed 1000 grams: I would use 500 raw and 500*.91=455.

'; ?>

Low expansion version of cone 6 Alberta Slip amber glaze glaze

Alberta Slip with 20% added frit 3134 (left) fired to cone 6 on a porcelain. This is the standard GA6-A recipe. On the right 20% frit 3249 has been used instead. That is a low expansion frit so if you have crazing with the standard recipe, consider trying this one.

'; ?>

Thin titanium band sprayed over cone 6 glazes demonstrates crystallization

The first is on GA6-A, the rest are on GA6-C (Alberta slip glazes). The last has been applied too thickly, the brown band is dry and blistered.

'; ?>

GA6-A Alberta Slip base on the insides of two bowls

This has produced a defect free fired surface at cone 6 oxidation on a dark and light burning clay body. To get this type of surface for stoneware bodies it is important to soak the kiln at cone 6, then cool it 100 degrees F and soak it again for half an hour. For coarser clays it is also helpful to program a 200 degree per hour cool all the way down to 1500F.

'; ?>

A transparent that looks good on cone 6 red burning bodies

The GA6-A Alberta Slip:Frit 3134 (80%:20%) glaze is excellent as a liner for dark burning bodies, it looks much better than a regular transparent recipe (which often form clouds of bubbles on red bodies). The iron in this glaze makes it fire an amber color on buff burning bodies (not very attractive), but on red bodies it brings out the natural color of the clay.

'; ?>

GA6-A Alberta Slip base glaze on a porcelain at cone 6

This is (80:20 Alberta Slip:Frit 3134). It produces an attractive transparent amber effect with excellent variation in tone with the varying thickness that occur on sharp contours.

'; ?>

Alberta Slip GA6-A clear glaze on two red bodies

GA6-A Alberta Slip base inside two red clays. The mug on left has 0.5% added tin oxide (which improves homogeneity of color, likely because it impedes crystal growth).

'; ?>

Fast cooling vs. slow cooling Alberta Slip GA6-A transparent base

These two mugs have the Alberta Slip base cone 6 GA6-A glaze on the inside. The left one is cooled normally (kiln off at cone 6 after soak). For the mug on the right the kiln has been soaked for half an hour at 1800F on the way down. This was done to develop the rutile blue glaze on the outside, but during this period crystallization occurred on the inside. If you need to cool slow (for the Alberta Slip rutile blue) but would like the transparent liner, add 0.5-1% tin oxide to the GA6-A to impede crystal growth.

'; ?>

A typical transparent glaze vs. Alberta Slip amber base vs. a on a red burning cone 6 body

The body is Plainsman M332, a coarse particled brown to red burning cone 6 body. With the G2926B transparent cone 6 glaze (left) and the GA6-A Alberta Slip base (right). The latter brings out the color of the body much better, the former is milky, bubbly and yucky!

'; ?>

GA6A Alberta Slip base using Frit 3124, 3249 and 3195 on dark body

The body is dark brown burning Plainsman M390 (cone 6). The amber colored glaze is 80% Alberta Slip (raw:calcine mix) with 20% of each frit. The white engobe on the inside of two of the mugs is L3954A (those mugs are glazed inside using transparent G2926B). The Alberta Slip amber gloss glaze produces an ultra-gloss surface of high quality on mugs 2 and 3 (Frit 3249 and 3195). On the outside we see it this glaze on the white slip until midway down, then on the bare red clay. The amber glaze on the first mug (with Frit 3124) has a pebbly surface that is not working nearly as well. These mugs are fired using a drop-and-soak firing schedule.

'; ?>

Tin oxide stops crystallization in GA6-A Alberta Slip base glaze

Both of these mugs were soaked 15 minutes at cone 6 (2200F), then cooled at 100F per hour to 2100F and soaked for 30 minutes and then cooled at 200F/hour to 1500F. This firing schedule was done to eliminate glaze defects like pinholes and blisters. Normally the GA6-A glaze crystallizes (devitrifies) heavily with this type of firing, but an addition of 1% tin oxide to the one on the left has prevented this behavior.

'; ?>

Alberta Slip GA6-A cone 6 base glaze slow cooled

GA6-A Alberta Slip base glaze (80 Alberta Slip:20 Frit 3134) fired with Plainsman slow cool cone 6 firing schedule on Plainsman M390 iron red clay. If this is cooled at normal speed, it fires to a glossy clear amber glass with no crystals.

'; ?>

Ravenscrag Cone 6 Floating Blue on porcelain and a red stoneware

The insides are GA6-A Alberta Slip cone 6 base. Outsides are Ravenscrag Floating Blue GR6-M. The firing was soaked at cone 6, dropped 100F, soaked again for half and hour then cooled at 108F/hr until 1400F. The speckles on the porcelain blue glaze are due to agglomerated cobalt oxide (done by mixing cobalt with a little bentonite, drying and pulverizing it into approx 20 mesh size and then adding that to the glaze slurry).

'; ?>

Plainsman iron red clays with rutile blue Alberta Slip glaze

Cone 6 mugs made from Plainsman M350 (left) and M390 dark burning cone 6 bodies. The outside glaze is Alberta-Slip-based GA6-C rutile blue and the inside is GA6-A base (20% frit 3134 and 80% Alberta Slip). That inside glaze is normally glossy, but crystallizes to a stunning silky matte when fired using the schedule needed for the rutile blue (cool 100F and soak, slow cool to 1400F).

'; ?>

A transparent glaze with added iron oxide vs. Alberta Slip at cone 6

On this dark burning body (Plainsman M390) these two glaze fire to a very similar appearance. The glaze on the left is G2926B with 4% added iron. However the Alberta Slip (GA6A) on the right is producing a more glassy and deeper, cleaner color.

'; ?>

GA6A Alberta Slip base using Frit 3249 and 3195 on buff body

The body is buff burning Plainsman M340 (cone 6). The amber colored glaze is 80% Alberta Slip (raw:calcine mix) with 20% of each frit. The white engobe on the inside of mug 1 is L3954A (also glazed inside using transparent G2926B). These frits are producing an amber gloss glaze of high quality. On the outside of mug 1 we see it this glaze on the white slip until midway down, then on the bare buff clay. These mugs are fired using a drop-and-soak firing schedule.

'; ?>

A Cone 6 white engobe works miracles on these dark and buff burning bodies

Left is Plainsman M340. Right is M390. Each mug has been white engobed inside and half-way down the outside. The insides have been glazed using G2926B clear. The inside surface has more depth and has a richer appearance than you could achieve using a white glaze (especially over the dark burning body). The outside of the left one is Alberta Slip base GA6A using Frit 3249 (it produces a more stable glass of lower thermal expansion). The outside glaze on the right is the clear plus 4% iron oxide. This technique of using the engobe enables porcelain-like functional surfaces on the insides and striking visual contrast and character on the outside of the dark body mug.

'; ?>

A cone 6 clear glaze plus iron vs. Alberta Slip clear base

These two mugs are made from a dark red burning stoneware and fired in a cool-and-soak firing schedule. A white engobe (L3954A) has been applied on the inside and half way down the outside. Both are glazed inside with G2926B whiteware transparent glaze. The outside glaze on the left is the same transparent with 4% added iron oxide. It has been sieved to 80 mesh. Notice the iron agglomerates and still produces specking (an effect that may be desired, but difficult to keep consistent). Interestingly, that iron is producing a clear amber-colored glass about equal in color to the Alberta Slip GA6A base glaze (80% Alberta Slip, 20% Frit 3195) on the mug on the right.

Out Bound Links

In Bound Links


By Tony Hansen




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved