This is Zero3 porcelain made using Dragonite Halloysite (instead of New Zealand Halloysite). It is the L2934C recipe. It was fired to cone 03 and glazed with G2931K clear glaze (which has fired crystal clear and flawless). I fired at 1200F/hr to 1950F, held it for 15 minutes, cooled at 999F/hr to 1850F and held it for 30 minutes, then dropped as fast as the kiln would do. It has some translucency and fires with a purplish hue (the NZ burns blue-white and is more translucent).

2,3,4,5% rutile added to a 80:20 mix of Alberta Slip:Frit 3134 at cone 6. This variegating mechanism of rutile is well-known among potters. Rutile can be added to many glazes to variegate existing color and opacification.

The same glaze with MgO sourced from a frit (left) and from talc (right). The glaze is 1215U. Notice how much more the fritted one melts, even though they have the same chemistry. Frits are predictable when using glaze chemistry, it is more absolute and less relative. Mineral sources of oxides impose their own melting patterns and when one is substituted for another to supply an oxide in a glaze a different system with its own relative chemistry is entered. But when changing form one frit to another to supply an oxide or set of oxides, the melting properties stay within the same system and are predictable.

4sight/images/recipes/bory1.jpg picture not found

Alberta Slip in the common 11% lithium and 4% tin Albany slip cone 6 glaze.

10% lithium and 4% tin do this to an otherwise transparent dull brown Alberta Slip.

G2415E Alberta lithium brown alternative recipe (cone 6)

Cone 04 Buffstone clay with Ravenscrag:Frit 3195 50:50 glaze over stain colored slips

Ravenscrag glaze on Plainsman M340

Ravenscrag slip (left half) vs. Ravenscrag plus 10% whiting (right half) on Plainsman H550 at cone 10R

This one inch tall mug was made using Alberta Slip plus 1% black stain and 20% frit 3134.

This 1 inch tall mug is glazed with Alberta Slip plus lithium, tin and some frit.

By itself on the left, over another glaze on the right.

This is a metallic silky crystal black, it is Alberta Slip plus 5% Mason 6600 black stain, 5% Mason 6666 black and 7% iron.

This is fired in cone 10R. The effect becomes more intense by 5%. To achieve this same effect using Ravenscrag, which has much less natural iron content, 10% added iron is needed (which is, of course, much messier to work with).

A jet a black glossy glaze for cone 10R is as easy as 1% black stain and 99% Alberta Slip (Mason 6666 or 6600).

Small porcelain vase

This is fired at cone 04. It is Buffstone clay with Ravenscrag:Frit 3195 50:50 glaze over stain colored slips.

Made using chrome and tin added to the cone 6 Ravenscrag clear base glaze recipe.

G2851B over G2851A (Ravenscrag Slip glazes)

This demonstrates how the host glaze affects the color development of certain stains. Blue is stable in pretty well all glazes. But chrome tin pink (top row) is very particular that the glaze have the right chemistry (1214M is obviously best, it has the highest CaO and lowest B2O3). The 6100 brown works much better in the N and O base glazes (they have higher Al2O3). Stain companies have guidance on chemistry particulars and you can view the chemistry of your recipe in your account at

L3362A speckle test cone 10R (G2240 spodumene) using ground iron stone concretions (50% 70-100 mesh, 35% 50-70 mesh, 15% 40-50 mesh) at 0.5%, 0.3%, 0.1% (left to right).

Cone 5 on porcelain

Cone 6 on porcelain

Cone 7 on porcelain

Ravenscrag dark crystal green on Plainsman M340 at cone 6

The black recipe was made using G1214M with 5% Mason 6666 stain. The oatmeal overlayer is 50% the thickness of the black. The more fluid under-black comes through leaving islands and vertical rivulets of the stiffer oatmeal. Good control of the glazing process is needed to get consistent results using this approach.

Ravenscrag floating blue on Plainsman M340

At cone 10R this produces an overly melted glaze. It also crazes.

RaRavenscrag slip (left half) vs. Ravenscrag plus 10% whiting (right half) on Plainsman H440 at cone 10R

The body is Plainsman M340. This is a good alternative to trying to get a chrome-tin pink or maroon working.

Ravenscrag Black on Plainsman M340

Ravenscrag high calcium blue on M340

Ravenscrag plus dolomite on Plainsman H440.

Ravenscrag Slip is not ultra glossy but has a silky surface. It also contains some iron oxide and this colors the glaze somewhat. But the surface is much less sterile and pleasant to touch.

Ravenscrag plus dolomite on Plainsman H550.

Ravenscrag plus dolomite on Plainsman H570

1215U glazes with various Mason stains

This shows clearly how well the M version works with a chrome-tin stain compared to the others. However the 6100 brown stain works best in the N recipe (which have MgO). Notice also that the M has a higher thermal expansion than the others.

These recipes have the same chemistry but the 1215U uses frit to source the MgO and CaO. This demonstrates that it is not just chemistry that determines melt flow. Raw materials are crystalline and have different melting patterns than frits (which have already been melted and reground).

G1214W dark blue glaze from Lilly Ann Hume

G1214W light blue from Lilly Ann Hume

G1214W light green glaze from Lilly Ann Hume

G1214W pastel orange glaze from Lilly Ann Hume

G1214W tangerine glaze from Lilly Ann Hume

The referred to surface is the outside of this large bowl. The base glaze (inside and out) is GA6-D Alberta Slip glaze fired at cone 6 on a buff stoneware. The thinness of the rutile needs to be controlled carefully, the only practical method to apply it is by spraying. The dramatical effect is a real testament to the variegating power of TiO2. An advantage of this technique is the source: Titanium dioxide instead of sourcing TiO2 from the often troublesome rutile.

This is the G2571A base dolomite matte recipe. The specimen on the left adds 4% tin and 1% iron oxide. The one on the right has 4% tin oxide and 0.5% iron oxide.

This bamboo glaze (made by adding 4% tin and 1% iron oxide (left) and 0.5% iron oxide (right) to the G2571A base recipe) amplifies the iron speckle in the body beneath (Plainsman H443). Unfortunately this looks good and but is not very functional. The body is quite porous (5% water absorption), this is necessary for the mottled brown visual effect.

Speckled GA6-D glaze at cone 6.

This is a base recipe that was originally used for electrical insulators on a 25% porcelain recipe. Since most porcelains and whitewares used in high fire ceramics have this same type of formulation, this glaze recipe has proven to work well. It is not highly fluid, so if refractory colorants are added extra flux may be needed.

Alberta Slip with 20% added frit 3134 (left) fired to cone 6 on a porcelain. This is the standard GA6-A recipe. On the right 20% frit 3249 has been used instead. That is a low expansion frit so if you have crazing with the standard recipe, consider trying this one.

In the glaze on the left (90% Ravenscrag Slip and 10% iron oxide) the iron is saturating the melt crystallizing out during cooling. GR10-K1, on the right, is the same glaze but with 5% added calcium carbonate. This addition is enough to keep most of the iron in solution through cooling, so it contributes to the super-gloss deep tenmoku effect instead of precipitating out.

You add up to 5% manganese dioxide. The base recipe is G2571A. The clay body is a buff burning stoneware having iron speckle. The quality of the surface is excellent and it is durable.

The 85% Albany, 11% lithium, 4% tin oxide brown recipe using Alberta Slip (left) and reduced lithium content (G2415E).

The liner is G2571A dolomite matte.

This is the G2571A glaze recipe. It has proven reliable and functional over many years on a wide range of clay bodies in the Plainsman Clays studio. Actually, a better brown color can be achieved using manganese dioxide.

Right: Alberta slip is almost a Tenmoku glaze by itself at cone 10 reduction. To go all the way only 1-2% more iron is needed (plus a little extra flux for melt fluidity, perhaps 5% calcium carbonate). Compare that to crow-baring a clear glaze into a tenmoku (left): This is G1947U plus 11% red iron oxide. That produces a slurry that is miserable to work with (it stains everything it comes into contact with) and turns into a jelly on standing.

The rutile blue variegation effect is fragile. It needs the right melt fluidity, the right chemistry and the right cooling (during firing). This is Alberta Slip GA6C recipe on the right (normal), the glaze melt flows well due to a 20% addition of Ferro Frit 3134 (a very low melting glass). On the left Boraq has been used as the flux (it is a calcium borate and also melts low, but not as low as the frit). It also contains significant MgO. These two factors have destroyed the rutile blue effect!

This is Alberta Slip (GA6C) on the left. Added frit is melting the Alberta Slip clay to it flows well at cone 6 and added rutile is creating the blue variegated effect (in the absence of expensive cobalt). However GA6D (right) is the same glaze with added Tin Oxide. The tin completely immobilizes the rutile blue effect, it brings out the color of the iron (from the rutile and the body).

Example of 5% black iron oxide (left), red iron oxide (center) and yellow iron oxide (right) added to G1214W glaze, sieved to 100 mesh and fired to cone 8. The black is slightly darker, the yellow has no color? Do you know why?

This has produced a defect free fired surface at cone 6 oxidation on a dark and light burning clay body. To get this type of surface for stoneware bodies it is important to soak the kiln at cone 6, then cool it 100 degrees F and soak it again for half an hour. For coarser clays it is also helpful to program a 200 degree per hour cool all the way down to 1500F.

Ravenscrag Slip GR6-A (20% frit 3134) and Alberta Slip GA6-A (20% frit 3134) glazes on M340 at cone 5 reduction.

GA6A glaze fired at cone 5R on Plainsman M350 and M340.

GA6A glaze (Alberta Slip 80%, Frit 3134 20%) at cone 5R (left) and pure Alberta Slip at cone 10R (right).

Cone 5 GR6-A glaze at cone 5R on Plainsman M340 (left) and pure Ravenscrag Slip at cone 10R on H550 (right).

GA6-D brown Alberta Slip glaze at cone 5R.

On Plainsman P300 (left) and M350 (right). The blue effect is darker and richer than oxidation. The richer effect is also partly because the reduction kiln cools slower.

GA6-A at cone 5R on Plainsman M370, M350.

GR6-H Ravenscrag Oatmeal glaze cone 6 oxidation.

Cone 10 reduction iron red cone 10 glaze

Body is Plainsman P580. Far left: G2894 Ravenscrag Tenmoku with 10% whiting and 10% iron oxide added. Center: Pure Alberta Slip plus 5% whiting and 1% iron oxide. Right: Pure Alberta Slip plus 5% whiting and and 2% iron. The Alberta Slip versions are less messy to use because so much less iron is needed (iron also causes the slurry to gel). The Ravenscrag and higher iron Alberta Slip versions are running, they are too fluid. The rust colored crystals are not developing the way they did with these glazes on an iron stoneware (in the same firing).

All of these are on a cone 10 reduction fired iron stoneware (Plainsman H443). Far left: G2894 Ravenscrag Tenmoku with 10% whiting and 10% iron oxide added. Center: Pure Alberta Slip plus 5% whiting and 1% iron oxide. Right: Pure Alberta Slip plus 5% whiting and and 2% iron. The Alberta Slip versions are less messy to use because so much less iron is needed (iron also causes the slurry to gel). The Ravenscrag version is running, it is too fluid. Likely 5% calcium carbonate would be enough (and maybe less iron).

GR10-J Ravenscrag silky matte (right) and G2571A matte (left) on a dark burning iron speckled stoneware at cone 10R. Surfaces have identical feel (the chemistries are very close). The former fires a little darker color because of the iron contributed by the Ravenscrag Slip.

GR10-J Ravenscrag silky matte (right) and G2571A matte (left) on a buff stoneware at cone 10R. Surfaces feel identical, the slightly darker color is due to iron content in the Ravenscrag. The former was formulated to mimic the latter using as much Ravenscrag Slip as possible yet still maintain the same chemistry.

A matte black made from ball milled Alberta Slip with 5% Mason 6666 stain at cone 10R.

Alberta Slip plus 10% frit 3134 fire at cone 10 oxidation.

GR10-C Ravenscrag glaze on iron stoneware

GR10-C Ravenscrag glaze on grey stoneware.

GR10-G Ravenscrag white glaze at cone 10 oxidation

Ravenscrag Recipe B Light blue

The 80:20 base Alberta slip base becomes oatmeal when over saturated with rutile or titanium (left:6% rutile, 3% titanium; right:4% rutile, 2% titanium right). That oatmeal effect is actually the excess titanium crystallizing out of solution in the melt as the kiln cools. Although the visual effects can be interesting, the micro-crystalline surface is often susceptible to cutlery marking and leaching. This is because the crystals are not as stable or durable as the glass of the glaze.

This is a cone 11 oxidation melt flow test. Shown (left to right) are the new shipment of Cornwall Stone 2011, the L3617 calculated equivalent (a recipe, see link), the older Cornwall shipment we have been using and the H&G substitute 2011 (far right, mislabelled on the picture). These do not flow well here, a small frit addition is needed to better compare them. However they have melted enough to see some differences in whiteness and degree of melt. Notice the L3617 is more like the old Cornwall than the new Cornwall is.

These flow tests demonstrate how similar the substitute recipe (left) is to the real material (right). 20% Frit 3134 has been added to each to enable better melting at cone 5 (they do not flow even at cone 11 without the frit). Links below provide the recipe for the substitute and outline the method of how it was derived using Digitalfire Insight software. This substitute is chemically equivalent to what we feel is the best average for the chemistry of Cornwall Stone.

Yes. The two specimens are both the same Grolleg-based porcelains. Both of them are glazed with the same glaze: 1947U transparent. But the glaze on the left is using EP Kaolin and the one on the right Grolleg kaolin. The Grolleg glaze is dramatically better, the color has a bluish cast that is more attractive. The Grolleg does not suspend the slurry as well, however it responds well to gelling (using vinegar, for example) more than compensating to create an easy-to-use suspension.

Right: Ravenscrag GR6-A transparent base glaze. Left: It has been opacified (turned opaque) by adding 10% Zircopax. This opacification mechanism can be transplanted into almost any transparent glaze. It can also be employed in colored transparents, it will convert their coloration to a pastel shade, lightening it. Zircon works well in oxidation and reduction. Tin oxide is another opacifier, it is much more expensive and only works in oxidation firing.

Make cone 10R bamboo colors using the GR10-J Ravenscrag silky matte base recipe (right) and adding 1% iron (left), (0.5% centre). These samples are porcelain. This iron addition also works using the G2571A matte base recipe.

Calcined Alberta Slip (right) and raw powder (left). These are just 5 inch cast bowls, I fire them to cone 020 and hold it for 30 minutes. Why calcine? Because for glazes having 50% or more Alberta Slip, cracking on drying can occur, especially if it is applied thick (Alberta Slip is a clay, it shrinks). I mix 50:50 raw:calcine for use in recipes. However, Alberta Slip has an LOI of 9%, so I need to use 9% less of the calcine powder (just multiply the amount by 0.91). Suppose, I needed 1000 grams: I would use 500 raw and 500*.91=455.

These mugs have experienced very serious shivering. This is an Albany Slip glaze with 10% lithium carbonate, it is known to have a very low thermal expansion. This problem can be solved by reducing the amount of lithium or adding high-expansion sodium or potassium. However these fixes will likely affect the appearance.

The mug is the buff stoneware Plainsman M340. Firing is cone 6. On the inside is the GR6-A Ravenscrag transparent base glaze. The outside glaze is GA6-C Alberta Slip rutile blue on the outside. The transparent, although slightly amber in color compared to a frit-based transparent, does look better on buff burning stoneware bodies this.

The surface is between silky and glossy.

The recipe is GA6-C. These are from the same firing (slower cooling is needed to develop the rutile effect).

GR10-K1 Cone 10R Ravenscrag Tenmoku (right) compared to Tenmoku made from Alberta Slip (left, it is 91% Alberta Slip with 5% added calcium carbonate and 2% iron oxide). Left is Plainsman P700 porcelain, right is H570. Tenmokus are popular for the way they break to a crystalline light brown on the edges of contours.

Robin's egg blue at Cone 10R: add 1% cobalt oxide and 0.2% chrome oxide to GR10-J Ravenscrag silky matte. Does not work well on porcelains (left), very well on buff stonewares (right). Inside of center mug is GR10-J.

GR10-K1 Ravenscrag tenmoku (left) compared to Alberta Slip tenmoku GA10-B (center) and pure Alberta Slip (right).

(50:50 Ravenscrag Slip:Alberta Slip) at cone 10R on porcelain (right) and stoneware (left).

On a white stoneware and a porcelain. The glaze is transparent, it has depth and varies in shade according to thickness, breaking to a much lighter shade on the edges of contours.

Porcelain (left), buff stoneware (center), iron stoneware (right). Works well on all body types. On porcelain, interesting red tones and variations in tone appear.

GA6-C (left) and GA6-E (right) at cone 6 oxidation. The E version adds 4% spodumene onto the 4% rutile in the C (the base is 80% Ravenscrag Slip and 20% frit 3134). This glaze requires slower cooling. It looks the best on dark bodies.

Because this glaze employs 10% dolomite instead of 10% calcium carbonate it has a lower thermal expansion and is less likely to craze. While the dolomite is contributing MgO, which normally mattes glazes, there is not enough to do it here.

True functional mattes have fluid melts, like glossy glazes. They need this in order to develop a hard, non-scratching durable glass. The mechanism of the matte on the right is high Al2O3 (G1214Z), it is actually melting more than the glossy glaze on the left (G1214W).

Melt flow test comparing two cone 6 iron red glazes fired to and cooled quickly from cone 6. Iron reds have very fluid melts and depend on this to develop the iron red crystals that impart the color. Needless to say, they also have high LOI that generates bubbles during melting, these disrupt the flow here.

G2896 Ravenscrag plum red iron red cone 6 glaze.

The GA6-A Alberta Slip:Frit 3134 (80%:20%) glaze is excellent as a liner for dark burning bodies, it looks much better than a regular transparent recipe (which often form clouds of bubbles on red bodies). The iron in this glaze makes it fire an amber color on buff burning bodies (not very attractive), but on red bodies it brings out the natural color of the clay.

This is (80:20 Alberta Slip:Frit 3134). It produces an attractive transparent amber effect with excellent variation in tone with the varying thickness that occur on sharp contours.

GA6-A Alberta Slip base inside two red clays. The mug on left has 0.5% added tin oxide (which improves homogeneity of color, likely because it impedes crystal growth).

Cone 6 crystalline glaze on L3659B body, there is no crazing.

And it contains no cobalt! Fairly close in appearance to the classic cone 6 floating blue recipe used across North America, this is a variation of the Alberta Slip Rutile Blue glaze (except this adds 1% tin oxide, 1% black copper oxide and 2% ceramic rutile, it is GA6-C1). Because of the melt fluidity, it thins on the edges of contours and breaks to the color of the underlying body. It looks best on dark bodies, but if thick it is OK on light ones also.

Alberta Slip with 1-5% add Mason 6666 black stain fired at cone 10R. Semi-gloss blacks are produced. Notice that increased stain does not darken the color appreciably.

Alberta Slip with 1-5% add Mason 6600 black stain fired at cone 10R. Compared with 6666, these are more matte in higher percentages of stain. Notice that increased stain percentages do not darken the color appreciably.

A variation of Albany lithium brown glaze. Alberta Slip 75, lithium carbonate 10, tin oxide 4, nepheline syenite 11, calcined alumina 5.

An example of how a carbonate can cause blistering. Carbonates produce gases during decomposition. This glaze (G2415B) contains 10% lithium carbonate, which likely pushes the initial melting temperature down toward the most active decomposition temperatures.

The far left has 1% iron oxide, the far right 7%. Crystallization of the iron begins around 3%.

2, 5, 10, 15% calcium carbonate added to Ravenscrag Slip on a buff stoneware fired at cone 10R. It gets progressively glossier toward 15%, crazing starts at 10% (test by Kat Valenzuela). Adding a flux only reduces the SiO2 and Al2O3, this pushes the thermal expansion upwards. 5% is actually sufficient. An alternative would be to use wollastonite, it supplies SiO2 also.

2,5,10,15% talc added to Ravenscrag Slip on a buff stoneware fired at cone 10R. Matting begins at 10%. By Kat Valenzuela.

This is a buff stoneware clay. Crystal development toward a dolomite matte begins at 15%. By Kat Valenzuela.

Pure Ravenscrag Slip is glaze-like by itself (thus tolerating the alumina addition while still melting as a glaze). It was applied on a buff stoneware which was then fired at cone 10R (by Kat Valenzuela). This same test was done using equal additions of calcined alumina. The results demonstrated that the hydrated version much more readily decomposes to yield its Al2O3, as an oxide, to the glaze melt. By 15% it is matting and producing a silky surface. However crazing also starts at 10%. The more Al2O3 added the lower the glaze expansion should be, so why is this happening? It appears that the disassociation is not complete, some of the raw material remains to impose its high expansion.

The Ravenscag:Alumina mix was applied to a buff stoneware fired at cone 10R (by Kat Valenzuela). Matting begins at only 5% producing a very dry surface by 15%. The matte is simply a product of the refractory nature of the alumina as a material, it does not disassociate in the melt to yield its Al2O3 as an oxide (as would a feldspar, frit or clay). The same test using alumina hydrate demonstrates that it disassociates better (although not completely).

Pure Ravenscrag Slip on a porcelain at cone 10 oxidation (left) and cone 10 reduction (right). The reduction fired sample is a very smooth pleasant semi-matte, the other is glossier but dimpled.

13 iron, 0.5 cobalt, 0.5 chrome added to the GR6-A base.

G1214M with 5% added Mason 6666 stain makes a stunning black for cone 6.

A closeup of Alberta Slip lithium brown cone 6 recipe GA6-G on a porcelain. This has been applied very thinly, yet still covers very well and exhibits alot of variation even where thicknesses are slightly different.

GA6-G Alberta Slip lithium brown on the outside of a porcelain mug at cone 6. This is a thin application showing the amazing range of tones it gives.

GR10-C Ravenscrag cone 10R silky matte glaze (90% Ravenscrag Slip, 10% talc) produces stunning surfaces and has excellent slurry and application properties.

G1216M transparent glaze on Plainsman M370. It is ultra clear and very well melted and does not craze on any porcelain we have tried.

The stunning cone 10R Ravenscrag bamboo glaze (GR10-J plus 0.5% iron oxide) on a Grolleg porcelain. Up close it can feel and look like a fine wood surface (when used on a porcelain). The cone 10 recipes page at has more info.

Ravenscrag plus 10% iron oxide on the outside, Ravenscrag Slip plus 10% talc on the inside (GR10-J). Fired at cone 10 reduction.

Same body, same glaze. Left is cone 10 oxidation, right is cone 10 reduction. What a difference! This is a Ravenscrag Slip based glaze on a high-fire iron stoneware. In reduction, the iron oxide in the body and glaze darkens (especially the body) and melts much more. The behavior of the tin oxide opacifier is also much different (having very little opacifying effect in reduction).

The white slip on the left is an adjustment to the popular Fish Sauce slip (L3685A: 8% Frit 3110 replaces 8% Pyrax to make it harder and fire-bond to the body better). The one on the right (L3685C with 15% frit) is becoming translucent, obviously it will have a higher firing shrinkage than the body (a common cause of shivering at lips and contour changes). The slip is basically a very plastic white body, and white bodies are not nearly as vitreous as red ones at low fire. They need help to mature and a frit is the natural answer. With the right amount the fired shrinkage of body and slip can be matched and the slip will be opaque. This underscores the need to tune the maturity of an engobe to the body and temperature.

These two mugs have the Alberta Slip base cone 6 GA6-A glaze on the inside. The left one is cooled normally (kiln off at cone 6 after soak). For the mug on the right the kiln has been soaked for half an hour at 1800F on the way down. This was done to develop the rutile blue glaze on the outside, but during this period crystallization occurred on the inside. If you need to cool slow (for the Alberta Slip rutile blue) but would like the transparent liner, add 0.5-1% tin oxide to the GA6-A to impede crystal growth.

0.5% fine granular illmenite added to Ravenscrag cone 6 clear glossy white base glaze.

This is the Ravenscrag slip cone 6 base (GR6-A which is 80 Ravenscrag, 20 Frit 3134) with 10% Mason 6006 stain. Notice how the color is white where it thins on contours, this is called "breaking". Thus we say that this glaze "breaks to white". The development of this color needs the right chemistry in the host glaze and it needs depth to work (on the edges the glaze is too thin so there is no color). The breaking phenomenon has many mechanisms, this is just one. Interestingly, this transparent base has more entrained micro-bubbles than a frit-based glaze, these enhance the color effect.

GR6-M Ravenscrag cone 6 Floating Blue (center) on Plainsman M340, a buff burning body. On the left is a version having 80:20 Ravenscrag:Frit 3134 (no extra 10% Frit 3124). On the right is GR6-M on porcelain (where the floating effect has been largely lost). It appears the effect benefits from the iron it finds in the stoneware body.

GR6-M Ravenscrag Cone 6 Floating Blue on Plainsman M340 buff stoneware. This glaze also has this variegated visual character on porcelain. Because it has the GR6 base recipe (which is publicly available at, the slurry has very good working properties in the studio, it is a pleasure to use. This is an excellent showcase for the variegating mechanism of rutile.

A transparent glazed. It is a made from Plainsman Polar Ice in 2014 (a New Zealand kaolin based porcelain) and fired to cone 6 with G2926B clear glaze. 5% Mason 6306 teal blue stain was added to the clay, then this was wedged only a few times. The piece was thrown, then trimmed on the outside at the leather hard stage and sanded on the inside when dry.

The body is Plainsman M332, a coarse particled brown to red burning cone 6 body. With the G2926B transparent cone 6 glaze (left) and the GA6-A Alberta Slip base (right). The latter brings out the color of the body much better, the former is milky, bubbly and yucky!

These bowls were made by Tony Hansen using a mixture of white and stained New-Zealand-kaolin-based porcelain (Plainsman Polar Ice) fired at cone 6. The body is not only white, but very translucent.

Left: 4% rutile in the Alberta Slip:frit 80:20 base. This glaze has been reliable for years. But suddenly it began firing like the center mug! Three 5 gallon buckets of glaze (of differing ages) all changed at once. We tried every combination of thickness, firing schedule, clay body, ventilation, glazing method on dozens of separate pieces with no success to get the blue back. Even mixed a new batch, still no color. Finally the 'crow bar' method worked, 0.25% added cobalt oxide (right mug). It is identical ... amazing. It is not the same mechanism to get the color and it is not exactly the same, but worked while we figured out the real issue: the firing schedule (the secret turned out to be cooling, soaking, then slow cooling to 1400F).

Left: What GA6-C Alberta Slip rutile blue used to look like. Middle: When it started firing wrong, the color was almost completely lost. Right: The rutile effect is back with a vengeance! What was the problem? We were adjusting firing schedules over time to find ways to reduce pinholing in other glazes and bodies. Our focus was slowing the final stages of firing and soaking there. In those efforts the key firing phase that creates the effect was lost: it happens on the way down from cone 6. This glaze needs a drop-and-soak firing (e.g. cooling 270F from cone 6, soaking, then 150F/hr drop to 1400F).

Cone 03 white stoneware with red terra cotta ball-milled slip and transparent overglaze. These are eye-popping stunning. They are test L3685U (Ferro frit 3110, #6 tile kaolin, Silica), near the final mix for a white low fire stoneware. The G1916J glaze is super clear. Why? Two reasons. These were fired in a schedule designed to burn off the gases from the bentonite in the body before the glaze fuses (it soaks the kiln for 2 hours at 1400F). Terra cotta clays generate alot of gases at cone cone 03 (producing glaze micro-bubbles), but here the terra cotta is only a thin slip over the much cleaner burning white body.

The underglaze is G1214M cone 6 black (adds 5% Mason 6666 black stain). Overglaze left: GR6-H Ravenscrag Oatmeal. Overglaze right: GA6-F Alberta Slip oatmeal. Both produce a very pleasant silky matte texture (the right being the best). Both layers are fairly thin. In production it would be best to spray the second layer, keeping it as thin as possible. It is also necessary to adjust the ratio of raw to calcined Alberta or Ravenscrag Slips to establish a balance between drying hardness but not too much drying shrinkage (and resultant cracking).

This is GR6-H Ravenscrag oatmeal over G1214M black on porcelain at cone 6 oxidation to create an oil-spot effect. Both were dipped quickly. You can find more detail at

Melt fluidity test showing Perkins Studio clear recipe original (left) and a reformulated version that sources the boron from Ferro Frit 3134 instead of Gerstley Borate (right). The later is less amber in color (indicating less iron) and it melts to very close to the same degree.

Cone 6 transparent glaze testing to fit Plainsman M370: Left and right: Perkins Studio Clear. The far left one is a very thick application. Center: Kittens Clear. The porcelain for all is Plainsman P300. Why? Because P300 is much more likely to craze the glaze because it has a lower silica content (about 17% and only kaolin whereas M370 has 24% silica plus the free quartz that comes with the 20% ball clay it also contains). If a thick layer works on P300 it is a shoe-in to fit M370. If it also passes the oven:icewater test.

This is a melt fluidity test comparing two different tin oxides in a cone 6 transparent glaze (Perkins Clear 2). The length, character and color of the flow provide an excellent indication of how similar they are.

The green boxes show cone 6 Perkins Studio Clear (left) beside an adjustment to it that I am working on (right). I am logged in to my account at In the recipe on the right, code-numbered G2926A, I am using the calculation tools it provides to substitute Frit 3134 for Gerstley Borate (while maintaining the oxide chemistry). A melt flow comparison of the two (bottom left) shows that the GB version has an amber coloration (from its iron) and that it flows a little more (it has already dripped off). The flow test on the upper left shows G2926A flowing beside PGF1 transparent (a tableware glaze used in industry). Its extra flow indicates that it is too fluid, it can accept some silica. This is very good news because the more silica any glaze can accept the harder, more stable and lower expansion it will be. You might be surprised how much it took, yet still melts to a crystal clear. See the article to find out.

These are two cone 6 matte glazes (shown side by side in an account at Insight-live). G1214Z is high calcium and a high silica:alumina ratio (you can find more about it by googling 1214Z). It crystallizes during cooling to make the matte effect and the degree of matteness is adjustable by trimming the silica content (but notice how much it runs). The G2928C has high MgO and it produces the classic silky matte by micro-wrinkling the surface, its matteness is adjustable by trimming the calcined kaolin. CaO is a standard oxide that is in almost all glazes, 0.4 is not high for it. But you would never normally see more than 0.3 of MgO in a cone 6 glaze (if you do it will likely be unstable). The G2928C also has 5% tin, if that was not there it would be darker than the other one because Ravenscrag Slip has a little iron. This was made by recalculating the Moore's Matte recipe to use as much Ravenscrag Slip as possible yet keep the overall chemistry the same. This glaze actually has texture like a dolomite matte at cone 10R, it is great. And it has wonderful application properties. And it does not craze, on Plainsman M370 (it even survived and 300F to ice water plunge without cracking). This looks like it could be a great liner glaze.

Like Plainsman M390 on the right. It is good on M340 (a buff stoneware on the left), but it is even better on a porcelain.

Cone 6 Ravenscrag Silky Matte on Plainsman M340 (left) and M370 (right). The inside of the M370 mug is a transparent glossy. This recipe produces a silky ivory-coloured surface of very good quality. Go to for more info.

The flow on the left is an adjusted Perkins Frit Clear (we substituted frit for Gerstley Borate). It is a cone 6 transparent that appeared to work well. However it did not survive a 300F oven-to-icewater test without crazing on Plainsman M370. The amount of flow (which increases a little in the frit version) indicates that it is plenty fluid enough to accept some silica. So we added 10% (that is the flow on the right). Now it survives the thermal shock test and still fires absolutely crystal clear.

Worthington Clear is a popular low fire transparent glaze recipe. It has 55% Gerstley Borate plus 30% kaolin (Gerstley Borate melts at a very low temperature because it sources lots of boron). GB is also very plastic, like a clay. I have thrown a pot from this recipe! This explains why high Gerstley Borate glazes often dry so slowly and shrink and crack during drying. When recipes also contain a plastic clay the shirinkage is even worse. GB is also slightly soluble, over time it gels glaze slurries. Countless potters struggle with Gerstley Borate recipes. How could we fix this one? First, substitute all or part of the raw kaolin for calcined kaolin (using 10% less because it has zero LOI). Second: It is possible to calculate a recipe having the same chemistry but sourcing the magic melting oxide, boron, from a frit instead.

A melt fluidity comparison between two cone 6 matte glazes. G2934 is an MgO saturated boron fluxed glaze that melts to the right degree, forms a good glass, has a low thermal expansion, resists leaching and does not cutlery mark. G2000 is a much-trafficked cone 6 recipe, it is fluxed by zinc to produce a surface mesh of micro-crystals that not only mattes but also opacifies the glaze. But it forms a poor glass, runs too much, cutlery marks badly, stains easily, crazes and is likely not food safe! The G2934 recipe is google-searchable and a good demonstration of how the high-MgO matte mechanism (from talc) creates a silky surface at cone 6 oxidation the same as it does at cone 10 reduction (from dolomite). However it does need a tin or zircon addition to be white.

Left: a cone 6 matte glaze (G2934 with no colorant). Middle: 5% Mason 6006 chrome-tin red stain added. Right: 5% Mason 6021 encapsulated red stain added. Why is there absolutely no color in the center glaze? This host recipe does not have the needed chemistry to develop the #6006 chrome-tin color (it lacks enough CaO). Yet this same matte glaze intensifies the #6021 at only 5% (sometimes 20% or more encapsulated stain is needed to develop the color).

These are Mason stains added to the cone 6 G2934 silky MgO matte liner base glaze (with tin, zircopax and various stains added). The brightest colors (6600, 6350, 6300, 6021, 6404) were tested overnight in lemon juice without visible changes. It is known that MgO mattes are less prone to acid attack that CaO mattes. Caution is required with inclusion stains (like #6021), if they are rated to cone 8 they may already begin bubbling at cone 6 is some host glazes.

G2934 cone 6 matte (left) with 10% zircopax (center), 4% tin oxide (right). Although the cutlery marks clean off all of them, clearly the zircopax version has the worst problem and is the most difficult to clean. To make the best possible quality white it is wise to line blend in a glossy glaze to create a compromise between the most matteness possible yet a surface that does not mark or stain.

Left: G2934 cone 6 matte glaze with 3% Mason 6300 blue stain. Right: An additional 4% tin added. Notice how an opacified color does not have depth and therefore is lighter in color. Also it does not break to different shades at the edges of contours the way the transparent color does.

This sample of glaze was dried under a heat lamp to measure its water content. If a glaze that is this thick can crack this little during drying and adhere even to stainless steel there is absolutely no reason you need to suffer glazes cracking during drying on bisque ware. This one is very high in frit with about 15% No. 5 ball clay. Drying cracking problems can be fixed using Digitalfire Insight, it enables you to juggle a recipe to reduce and substitute plastic ingredients while maintaining the chemistry.

We are looking at two pairs of samples, they demonstrate why knowing about glaze chemistry can be so important. Each pair shows the same stain on two different base glazes (G2934 cone 6 matte and PGF1 cone 6 glossy). Why does the maroon not develop in the left pair, why is the purple stain firing blue on the right? The Mason Colorworks color chart and reference guide specifies that the host glaze must be zincless and have 6.7-8.4% CaO (this is a little unclear, it actually is expressing a minimum, the more CaO the better). But the colorless one has 11% CaO, it should work (the maroon one has only 9% and it is working)! Likewise the purple color develops correctly in the 9% CaO but wrong in the 11% CaO base. Both stains have the same caution on the reference guide. What is going on? It is an undocumented issue: MgO. The 11% CaO base glaze is high in MgO (that is what makes it matte), that impedes the development of both colors. When you talk to tech support at Mason (or any stain company), they need to know the chemistry of your glaze to help, not the recipe.

These are Mason stains added to cone 6 G2916F clear liner base glaze. Notice that all of these stains develop the correct colors with this base (except for manganese alumina pink 6020). However caution is required with inclusion stains (like #6021), if they are rated to cone 8 they may already begin bubbling at cone 6 is some host glazes.

These are Mason stains added to cone 6 G2926B clear liner base glaze. Notice that the chrome tin maroon 6006 does not develop as well as the G2916F glossy base recipe. The 6020 manganese alumina pink is also not developing. Caution is required with inclusion stains (like #6021), if they are rated to cone 8 they may already begin bubbling at cone 6 is some host glazes.

A 13 inch vase glazed with 100% Alberta Slip fired at cone 10R. The glaze was sprayed on. It is about 60% calcine and 40% raw powder. When it is very thin, as on the shoulder, it is quite metallic and varies from deep red to brown (depending on thickness). Where thick it is a tenmoku high gloss. The spots on the shoulder are thicker areas that have glossed.

The outside glaze on this cone 10R mug (made of Plainsman H550) is simply an Alberta Slip:Ravenscrag Slip 50:50 mix with 5% added Ferro Frit 3134 (the Alberta Slip is calcined). This produces a stunning celadon with great working and application properties. Inside glaze: Ravenscrag Slip 90%, talc 10% (a matte having an extra ordinary silky texture). Learn more at

This is G2571A cone 10R dolomite matte glaze with added 1% cobalt oxide, 0.2% chrome oxide. The porcelain is Plainsman P700, the inside glaze is a Ravenscrag Slip clear. This recipe can be googled, it has been available for many years and was first formulated by Tony Hansen. This base is very resistant to crazing on most bodies and it does not cutlery mark or stain. It also has very good application properties.

This iron crystal glaze is Ravenscrag slip plus 10% iron oxide fired to cone 10R on a buff stoneware (Plainsman H550). Since Ravenscrag slip is a glaze-by-itself at cone 10, it is an ideal base from which to make a wide range of glazes. It has its own website at It was originally formulated using Digitalfire Insight software. The project built on the merits of a specific silty clay that was noted to couple very good suspension and drying properties with a low firing temperature. The process involved calculating what minerals needed to be added to it to produce the chemistry of a middle-of-the road silky cone 10 glaze; the product was Ravenscrag Slip.

GR10-J Ravenscrag dolomite matte base glaze at cone 10R on Plainsman H443 iron speckled clay. This recipe was created by starting with the popular G2571 base recipe (googleable) and calculating a mix of materials having the maximum possible Ravenscrag Slip percentage. The resultant glaze has the same excellent surface properties (resistance to staining and cutlery marking) but has even better application and working properties. It is a little more tan in color because of the iron content of Ravenscrag Slip (see

This is 100% Alberta Slip (outside) on a white stoneware clay fired to cone 10R. The glaze is made using a blend of 60% calcine and 40% raw (as instructed at the support website). Alberta Slip was originally formulated during the 1980s (using Insight software) as a chemical duplicate of Albany Slip. The inside: A Ravenscrag Slip based silky matte.

Opacifying a cone 10 reduction magnesia matte glaze. On the left: G2571A dolomite matte, a popular recipe (from Tony Hansen). Right: 10% Zircopax has been added. Both are on a buff stoneware (H550 from Plainsman Clays).

M340 Transparent Liner glaze fired at slightly lower than cone 6. Using these modest stain amounts the degree of melting of the glaze is not overly affected (these were balls, they flattened during firing). However as a glaze layer on a body, many of these will not be as dark as you see here.

Matte glazes have a fragile mechanism. That means the same recipe will be more matte for some people, more glossy for others (due to material, process and firing differences). In addition, certain colors will matte the base more and others will gloss it more. It is therefore critical for matte glaze recipes to have adjustability (a way to change the degree of gloss), both for circumstances and colors. This recipe is Plainsman G2934 base matte with 6% Mason 6600 black stain added. It has been formulated to be on the more matte side of the scale so that for most people a simple addition of G2926B (M370 transparent ultra clear base recipe) will increase the gloss. That means users need to be prepared to adjust each color of the matte to fine tune its degree of gloss. Here you can see 5, 10, 15 and 20% additions of the gloss recipe.

These 10 gram balls were fired and melted down onto a tile. The one the left is the original G2934 Plainsman Cone 6 MgO matte with 6% stain. On the right the adjustment has a 20% glossy glaze addition to make it a little less matte. Notice the increased flow (the ball has flattened more) with the addition of the glossy. In addition, while the percentage of stain is actually less (on the right), the color appears darker! Tuning the degree of matteness when making color additions to a base is almost always necessary to achieve a glaze that does not cutlery mark.

I used a binder to form 10 gram balls and fired them at cone 08 (1700F). Frits melt really well, they do not gas and they have chemistries we cannot get from raw materials (similar ones to these are sold by other manufacturers). These contain boron (B2O3), it is magic, a low expansion super-melter. Frit 3124 (glossy) and 3195 (silky matte) are balanced-chemistry bases (just add 10-15% kaolin for a cone 04 glaze, or more silica+kaolin to go higher). Consider Frit 3110 a man-made low-Al2O3 super feldspar. Its high-sodium makes it high thermal expansion. It works in bodies and is great to incorporate into glazes that shiver. The high-MgO Frit 3249 has a very-low expansion, it is great for crazing glazes. Frit 3134 is similar to 3124 but without Al2O3. Use it where the glaze does not need more Al2O3 (e.g. it already has enough clay). It is no accident that these are used by potters in North America, they complement each other well. The Gerstley Borate is a natural source of boron (with issues frits do not have).

Left: Ravenscrag G2928C matte on inside of mug. Right: A clear glossy. The matte needs to be soaked in the kiln long enough to make sure it develops a functional surface, especially on the bottom. Mattes are not always the best choice for food surfaces, but you can do it if you blend in enough glossy glaze to make it smooth enough not to cutlery mark.

L3724F fluxed terra cotta slip applied over a white burning stoneware (L3685R) fired at cone 03. Most slips in use are not adequately fluxed and do not adhere well to the body below. The frit in this one attaches much better and even enables it to develop a sheen. Also, because of its volatility of color in the cone 03 range, variations in the shade and degree of sheen will impart an appearance like flashing.

This is L3724E terra cotta stoneware. The inside slip is L3685S, a frit-fluxed engobe that is hard like the body and attaches well to it (engobes are often insufficiently fluxed). The glaze (G1916Q) is Frit 3195, Frit 3110 and 15% ball clay. The body has about 3% porosity, enough to make very strong pots. However that porosity is still enough to absorb water (and coffee). Although not too visible here, the pinhole in the inner surface has enabled absorption and there is a quarter-sized area of discoloration below the glaze. The piece could possibly be fired a cone higher, but testing would be required to see if the slip is still firing-shrinkage and thermal-expansion compatible with the body and that the body would not be over-fired. A better solution is adjust the firing curve to heal the glaze better. High temperature stoneware can easily have a 3% porosity also, so this is not just a low fire issue.

Left: G1916Q transparent fired at cone 03 over a black engobe (L3685T plus stain) and a kaolin-based low fire stoneware (L3685T). The micro-bubbles are proliferating when the glaze is too thick. Right: A commercial low fire transparent (two coats lower and 3 coats upper). A crystal clear glaze result is needed and it appears that the body is generating gases that cause this problem. Likely the kaolin is the guilty material, the recipe contains almost 50%. Kaolin has a 12% LOI. To cut this LOI it will be necessary to replace some or all of the kaolin with a low carbon ball clay. This will mean a loss in whiteness. Another solution would be diluting the kaolin with feldspar and adding more bentonite to make up for lost plasticity.

This is Ravenscrag Slip, I am going to calcine about 10 pounds of it in this bisque ware vessel to destroy the plasticity. I will fire to 1000F and hold it for 2 hours to make sure the heat penetrates. Why calcine? Because I have found that in some glazes having 70% or more Ravenscrag Slip, cracking on drying can occur if it is applied too thick. I love the working properties of these glazes and want to optimize them to avoid any problems. I am going to mix 75:25 raw:calcine on the next batch of glaze. However, Ravenscrag has an LOI of 9%, so I need to use 9% less of the calcine powder (just multiply the amount by 0.91). Suppose, I needed 1000 grams: I would use 750 raw and 250*.91=227.5.

Two transparent glazes applied thickly and fired to cone 03 on a terra cotta body. Right: A commercial bottled clear, I had to paint it on in layers. Left: G1916S almost-zero-raw-clay glaze, a mix of Ferro frit 3195, 3110, calcined kaolin and a small amount of VeeGum T. The bubbles you see on the left are from the gas generated by the body. The ones on the right are from body and glaze. How can so many more bubbles be generated within a glaze? Raw kaolin. Kaolin loses 12% of its weight on firing, that turns to gas. Low temperature glazes melt early, while gassing may still be happening. So to get a crystal clear the raw clay content has to be as low as possible. Obviously, a white burning body made from refined materials would be even better. A good compromise: A red slip (or engobe) over a white burning body, it would generate far less gases because of being much thinner and still exhibit the nice red color.

L3685T based slips with only 5% Mason stains added fired to cone 03 with 1916J overglaze.

Alberta Slip cone 6 lithium brown (GA6-G1) on a red burning clay (left Plainsman M390) and buff burning (right M340). Obviously this looks better on the former where iron from the underlying body variegates the entire surface and bleeds through on contours where the glaze is thinner, creating a breaking effect.

These mugs are fired at cone 6 with GA6-G1 Alberta Slip lithium brown. The difference: the ratio of raw to calcine Alberta Slip. In this glaze, a 50:50 ratio was not working well (left). The glaze was shrinking too much on drying, then crawling on firing (it needs to be thickly applied to get the visual effect I want). I mixed the recipe using pure calcine Alberta Slip, then repeated a cycle of pouring a little of this into the 50:50 mix and trying it. I kept doing that and glazing another mug until I had a minimum of drying cracks (while still having good gelling, application properties and dry hardness). The mug on the right was the last cycle, it has fired perfect. Using this technique I can perfect the ratio of raw:calcine for each Alberta Slip glaze I use.

These are two 10-gram balls (formed by dewatering the glaze on plaster) of low temperature glazes (G1916J, G1916Q) containing only frit and kaolin fired to 1250F. The carbon is part of the LOI of the kaolin (that hardens and suspends the glaze). Yet these glazes have much lower carbon content than ones made from raw materials.

GA6-A Alberta Slip base glaze (80 Alberta Slip:20 Frit 3134) fired with Plainsman slow cool cone 6 firing schedule on Plainsman M390 iron red clay. If this is cooled at normal speed, it fires to a glossy clear amber glass with no crystals.

L3724E ball milled flocculated slip has been applied to L3685U low fire white stoneware. Notice how silky smooth it is. What is the secret of getting a perfectly even layer that does not drip: Thin the slip until it is fairly watery (stays in motion for 10 seconds or more after stirring) and then flocculating it using Epsom salts until it gels enough to stay in motion for less than 2 seconds.

G1916Q and J low fire ultra-clear glazes (contain Ferro Frit 3195, 3110 and EPK) fired across the range of 1650 to 2000F (these were 10 gram balls that melted and flattened as they fired). Notice how they soften over a wide range, starting below cone 010 (1700F)! At the early stages carbon material is still visible (even though the glaze has lost 2% of its weight to this point), it is likely the source of the micro-bubbles that completely opacify the matrix even at 1950F (cone 04). This is an 85% fritted glaze, yet it still has carbon; think of what a raw glaze might have! Of course, these specimens test a very thick layer, so the bubbles are expected. But they still can be an issue, even in a thin glaze layer on a piece of ware. So to get the most transparent possible result it is wise to fire tests to find the point where the glaze starts to soften (in this case 1450F), then soak the kiln just below that (on the way up) to fire away as much of the carbon as possible. Of course, the glaze must have a low enough surface tension to release the bubbles, that is a separate issue.

G2934 is a popular matte for cone 6 (far left). It is not matte because it is not melting enough or is covered with micro-crystals, it is an MgO matte (a mechanism produces a more pleasant surface that cutlery marks and stains less). But what if it is too matte for you? This recipe requires accurate firings, did your kiln really go to cone 6? Proven by a firing cone? If it did, then we need plan B: Add some glossy to shine it up a bit. I fired these ten-gram balls of glaze to cone 6 on porcelain tiles, they melted down into nice buttons that display the surface well. Top row proceeding right: 10%, 20%, 30%, 40% G2926B added (100% far right). Bottom: G2916F in the same proportions. The effects are similar but the top one produces a more pebbly surface.

Hard to believe, but this carbon is on ten-gram balls of low fire glazes having 85% frit. Yes, this is an extreme test because glazes are applied in thin layers, but glazes sit atop bodies much higher in carbon bearing materials. And the carbon is sticking around at temperatures much higher than it is supposed to (not yet burned away at 1500F)! The lower row is G1916J, the upper is G1916Q. These balls were fired to determine the point at which the glazes densify enough that they will not pass gases being burned from the body below (around 1450F). Our firings of these glazes now soak at 1400F (on the way up). Not surpisingly, industrial manufacturers seek low carbon content materials.

Potters often store glazes for long periods so tiny spherical precipitate particles can form. These were found in a months-old bucket of G2926B (M370 clear) cone 6 clear glaze (about 2 gallons). These can appear over time, depending on factors like temperature, electrolytes in your water or solubility in the materials (likely, the frit is slightly soluble). The glaze slurry should be screened periodically (or immediately if you note the particles when glazing a piece). This is an 80 mesh screen. Note the brush, using one of these gets the glaze through the screen much quicker than using a rubber spatula.

Crawling of a cone 10R Ravenscrag iron crystal glaze. The added iron oxide flocculates the slurry raising the water content, increasing the drying shrinkage. To solve this problem you can calcine part of the Ravenscrag Slip, that reduces the shrinkage. has information on how to do this.

This cone 04 mug has survived a 300F to Ice-water thermal shock test, one which a similar recipe failed badly. This is G1916T glaze on Plainsman Buffstone fired to cone 04 (the failing recipe was G1916Q). The difference? This one switches the Frit 3110 for Frit 3249.

G1916J (85% Ferro Frit 3195, 15% EPK) fired to cone 04 on Plainsman Buffstone and then 300F-Ice-water shocked. It tests better than 1916Q (which has some Frit 3110) but not as good at 1916T (which contains Frit 3249).

The inside glaze is pure Ravenscrag Slip and the outside glaze is a 50:50 mix of Ravenscrag and Alberta Slips. Each of the glazes employs an appropriate mix of calcined and raw clay to achieve a balance of good slurry properties, hardening and minimal drying shrinkage. Ravenscrag needs less calcined since it is less plastic than Alberta Slip.

Laguna B-Mix (left) and Plainsman H570 (right). They are fired to cone 10R with pure Ravensrag Slip on the inside and a 50:50 mix of Ravenscrag and Alberta Slips on the outside.

Alberta Slip 100% (left) and Alberta Slip Tenmoku (right). The tenmoku is a little more opaque and forms the characteristic brown crystals on edges of contours (e.g. rim).

Ravenscrag Slip iron crystal glaze fired at cone 10R on porcelains. The recipe is simply 90% Ravenscrag Slip and 10% iron oxide.

Fired at cone 10R

This Cone 10 matte mug has been refired to attach decals. During the refire the Quartz-containing body passed up through quartz and cristobalite inversions while the glaze did not (all of its quartz was converted to silicates during the previous glaze firing). The sudden expansion in these two zones stretched the glaze and cracked it. Had that glaze been better fitted (under some compression) it would have been able to survive.

These cone 6 porcelain mugs are hybrid. A commercial glaze inside (Amaco PC-30) and my liner glaze the inside (G2926B, which is googleable). When commercial glazes fit a clay (without crazing) it is by accident. But when you make your own glazes, you can tune them to fit your clay. The inside needs to be food safe and craze free, so I need to know what is in it. Want to start fixing and fitting your glazes? Open an account at, enter the recipes and upload good pictures and then contact me (I will give you suggestions).

These are 10 gram balls of four different common cone 6 clear glazes. I fired them to 1800F (bisque temperature) to see how dense they would be. Why? To answer this question: If the gases of decomposing lignite have not been fully expelled from the clay body during bisque, then could a glaze densify enough to seal the surface from that temperature up? The answer appear to be yes. I measured the porosity of these (weighing, soaking, weighing again): G2934 - 21%. G2926B - 0%. G2916F - 8%. G1215U - 2%. The implications: Glaze pinholes in improperly bisqued ware.

These clear glazed porcelain mugs are fired at cone 6. The one on the right has 0.2% Mason 6336 stain added to to G2926B base glaze.

Cone 6 mugs made from Plainsman M350 (left) and M390 dark burning cone 6 bodies. The outside glaze is Alberta-Slip-based GA6-C rutile blue and the inside is GA6-A base (20% frit 3134 and 80% Alberta Slip). That inside glaze is normally glossy, but crystallizes to a stunning silky matte when fired using the schedule needed for the rutile blue (cool 100F and soak, slow cool to 1400F).

This is GR6-L Ravenscrag Burgundy on porcelain at cone 6. The amount of stain is higher than usual (about 13% instead of 10%), thus the color is darker.

The stain has been cut to 10% giving the glaze more transparency and making it vary more in color with changing thickness.

I have switched to a Redart based red burning low fire stoneware. You can see all my test data on an insight-live share here: What are these? The white body matures to less than 2% porosity at cone 03. The red: 4%. The white can also be used as a slip on the red and the red as a slip on the white. The glaze (it is column three on the above share) works on both. They are both really plastic. This is really cool, I cannot wait to get down to the lab tomorrow to trim and slip these.

The Ravenscrag Slip based burgundy glaze on the outside of these mugs is made by fluxing Ravenscrag with 20% Ferro Frit 3134 and adding 10% Mason 6006 burgundy stain (actually these have a little less stain, about 8%). This stain works better than using raw chrome and tin. This glaze functions very well on porcelains and breaks white on the edges to highlight contours.

I am getting closer to reduction speckle in oxidation. I make my own speckle by mixing the body and a glossy glaze 50:50 and adding 10% black stain. Then I slurry it, dry it, fire it in a crucible I make from alumina, crush it by hand and screen it. I am using G2934 cone 6 magnesia matte as the glaze on this mug on the left. To it I added 0.5% minus 20 mesh speck. Right is a cone 10R dolomite matte mug. Next I am going to screen out the smallest specks, switch to a matte glaze when making the specks (they are too shiny here), switch to dark brown stain. Later we will see if the specks need to bleed a little more. I am now pretty well certain I am going to be able to duplicate very well the reduction look in my oxidation kiln. I will publish the exactly recipe and technique as soon as I have it.

The porcelain mug on the left is fired to cone 6 with G2926B clear glossy glaze. This recipe only contains 25% boron frit (0.33 molar of B2O3). Yet the mug on the right (the same clay and glaze) is only fired to cone 02 yet the glaze is already well melted! What does this mean? Industry avoids high boron glazes (they consider 0.33 high boron) because this early melting behavior means gases cannot clear before the glaze starts to melt (causing surface defects). For this reason, fast fire glazes melt much later. Yet many middle temperature reactive glazes in use by potters have double the amount of B2O3 that this glaze has!

G2922B is a cone 6 clear glaze that started as a well-known recipe "Perkins Studio Clear". We substituted Gerstley Borate with a frit (while maintaining the chemistry) and then noted that the glaze was highly fluid. Since I wanted to keep its thermal expansion as low as possible, I added 10% silica. 2926B shows that it is very well tolerated. Then I added 5% more (2926D) and 10% more (2926E which is still very glossy). That means that E represents a full 20% silica addition! SiO2 has no real downsides in any well melted glossy glaze, it hardens, stabilizes and lowers expansion.

10 grams balls of these three glazes were fired to cone 6 on porcelain tiles. Notice the difference in the degree of melt? Why? You could just say glaze 2 has more frit and feldspar. But we can dig deeper. Compare the yellow and blue numbers: Glaze 2 and 3 have much more B2O3 (boron, the key flux for cone 6 glazes) and lower SiO2 (silica, it is refractory). That is a better explanation for the much greater melting. But notice that glaze 2 and 3 have the same chemistry, but 3 is melting more? Why? Because of the mineralogy of Gerstley Borate. It yields its boron earlier in the firing, getting the melting started sooner. Notice it also stains the glaze amber, it is not as pure as the frit. Notice the calculated thermal expansion: That greater melting came at a cost, the thermal expansion is alot higher so 2 and 3 glaze will be more likely to craze than G2926B (number 1).

Boron (B2O3) is like silica, but it is also a flux. Frits and Gerstley Borate supply it to glazes. In this test, I increased the amount of boron from 0.33 to 0.40 (using the chemistry tools in my account). I was sure that this would make the glaze melt more and have less of a tendency to craze. But as these melt flow tests (10 gram balls melted on porcelain tiles) show, that did not happen. Why? I am guessing that to get the effect B2O3 has to be substituted, molecule for molecule for SiO2 (not just added to the glaze).

Courtesy of Jonathan Kirkendall

These are from the same firing, glazed at the same time and are the same thickness. The floating blue effect is a fragile mechanism and affected even by the small color difference in these bodies. The small amount of extra iron in the M370 affects the glaze character more than expected.

At cone 03 many terra cottas will fire quite dense and stoneware-like. The lip of the mug on the left is covered with a vitreous white engobe (L3685U) under the glaze (G1916Q). Red bodies are much stronger at low temperatures, but do not lend themselves well to the bright glaze colors that work so well at that range. Putting an engobe on as a base enables decoration with colored slips and a clear over glaze.

The insides are GA6-A Alberta Slip cone 6 base. Outsides are Ravenscrag Floating Blue GR6-M. The firing was soaked at cone 6, dropped 100F, soaked again for half and hour then cooled at 108F/hr until 1400F. The speckles on the porcelain blue glaze are due to agglomerated cobalt oxide (done by mixing cobalt with a little bentonite, drying and pulverizing it into approx 20 mesh size and then adding that to the glaze slurry).

We are comparing the degree of melt fluidity (10 gram balls melted down onto a tile) between two base clear glazes fired to cone 6 (top) and cone 1 (bottom). Left: G2926B clear boron-fluxed (0.33 molar) clear base glaze sold by Plainsman Clays. Right: G3814 zinc-fluxed (0.19 molar) clear base. Two things are clear: Zinc is a powerful flux (it only takes 5% in the recipe to yield the 0.19 molar). Zinc melts late: Notice that the boron-fluxed glaze is already flowing well at cone 1, whereas the zinc one has not even started. This is very good for fast fire because the unmelted glaze will pass more gases of decomposition from the body before it melts, producing fewer glaze defects.

These melt-flow and ball-melt tests compare 6 unconventionally fluxed glazes with a traditional cone 6 moderately boron fluxed (+soda/calcia/magnesia) base (far left Plainsman G2926B). The objective is to achieve higher melt fluidity for a more brilliant surface and for more reactive response with colorant and variegator additions (with awareness of downsides of this). Classified by most active fluxes they are: G3814 - Moderate zinc, no boron G2938 - High-soda+lithia+strontium G3808 - High boron+soda (Gerstley Borate based) G3808A - 3808 chemistry sourced from frits G3813 - Boron+zinc+lithia G3806B - Soda+zinc+strontium+boron (mixed oxide effect) This series of tests was done to choose a recipe, that while more fluid, will have a minimum of the problems associated with such (e.g. crazing, blistering, excessive running, susceptibility to leaching). As a final step the recipe will be adjusted as needed. We eventually chose G3806B and further modified it to reduce the thermal expansion.

Two clear glazes fired in the same slow-cool kiln on the same body with the same thickness. Why is one suffering boron blue (1916Q) and the other is not? Chemistry and material sourcing. Boron blue crystals will grow when there is plenty of boron (and other power fluxes), alumina is low, adequate silica is available and cooling is slow enough to give them time to grow. In the glaze on the left B2O3 is higher, crystal-fighting Al2O3 and MgO levels are alot lower, KNaO fluxing is alot higher, it has more SiO2 and the cooling is slow. In addition, it is sourcing B2O3 from a frit making the boron even more available for crystal formation (the glaze on the right is G2931F, it sources its boron from Ulexite).

On dark burning medium temperature stoneware bodies, clear glazes often do not look good. These bodies contain more raw clays that contain larger particles that generate gases on decomposition during firing. These often cloud up typical clear glazes with micro bubbles, marring their appearance. There is a solution. Although more fluid-melt clear glazes have risks (e.g. running, blistering) they do clear bubbles better. If applied thinly (so they do not run during firing) they can work very well in this circumstance. Of course they do darken the body color (this body, Plainsman M390, fires red without glaze). This outside glaze is G3806C fluid clear.

The first glaze is a control, a standard non-fluid clear with copper. The other three are the short-listed ones in my project to find a good copper blue recipe starting recipe and fix its problems (which they all have). The flow testers at the back and the melt-down-balls in front of them contain 1% copper carbonate. The glazed samples in the front row have 2% copper carbonate. L3806B, an improvement on the Panama Blue recipe, has the best color and the best compromise of flow and bubble clearing ability.

The top base glaze has just enough melt fluidity to produce a brilliant transparent (without colorant additions). However it does not have enough fluidity to pass the bubbles and heal over from the decomposition of this added copper carbonate! Why is lower glaze passing the bubbles? How can it melt better yet have 65% less boron? How can it not be crazing when the COE calculates to 7.7 (vs. 6.4)? First, it has 40% less Al2O3 and SiO2 (which normally stiffen the melt). Second, it has higher flux content that is more diversified (it adds two new ones: SrO, ZnO). That zinc is a key to why it is melting so well and why it starts melting later (enabling unimpeded gas escape until then). It also benefits from the mixed-oxide-effect, the diversity itself improves the melt. And the crazing? The ZnO obviously pushes the COE down disproportionately to its percentage.

Wrong. It is the one on the right. While the copper looks so much better in that fluid one on the left, that melt mobility comes at a cost: blisters. As a clear glaze it is no glossier than the other one, but it runs into thicker zones at the bottom and they blister. This is because the high mobility coupled with the surface tension blows bubbles as gases of decomposition travel through (in a normal cooling kiln they break low enough that mobility is insufficient to heal them). The fired glass in the one on the left is also not as hard, it will be more leachable, it will also craze more easily and be more susceptible to boron-blue devritrification. But as a green? Yes it is better.

This is the winner of a five-way cone 6 copper blue glaze comparison that started with my dissatisfaction with Panama blue. The porcelain body (of this mug) is the new Plainsman P300. When I compared these glazes I did not just eyeball them on a tile. I compared the bases first (without the copper and tin) using flow testing, slurry performance comparisons, ball melt tests to compare bubbles and color where very thick. Then I tried more copper and did more flow tests. I also did leaching tests. Where needed I adjusted recipes to increase clay content (while maintaining chemistry) so the slurries would work better. Without my account at to keep all of this organized it would have been so much more difficult, actually, I probably would not even have bothered with the project. The recipe is G3806C.

Fired at cone 6. A melt fluidity comparison (behind) shows the G3808A clear base is much more fluid. While G2926B is a very good crystal clear transparent by itself (and with some colorants), with 2% added copper oxide it is unable to heal all the surface defects (caused by the escaping gases as the copper decomposes). The G3808A, by itself, is too fluid (to the point it will run down off the ware onto the shelf during firing). But that fluidity is needed to develop the copper blue effect (actually, this one is a little more fluid that it needs to be). Because copper blue and green glazes need fluid bases, strategies are needed to avoid them running off the ware. That normally involves thinner application, use on more horizontal surfaces or away from the lower parts of verticals.

Here it is fired to cone 8 where the melt obviously has much more fluidity! The photo does not do justice to the variegation and crystallization happening on this surface. Of course it is running alot more, so caution will be needed.

This is G2571A cone 10R dolomite matte on an ironware body made from native North Carolina clays. Few glazes have the pleasant silky feel that this has yet are still functional. The feldspar content in the body has been tuned to establish a compromise between the warmer color low percentages have with the higher strength that higher percentages impart. Careful porosity tests were done and recorded in an account at The objective was to bring the body close to 3% absorption.

This terra cotta cup is glazed with G2931G clear glaze (Ulexite based) and fired at cone 03. It survives 25 seconds under direct flame against the sidewall before a crack occurs. Typical porcelains and stonewares would survive 10 seconds. Super vitreous porcelains 5 seconds. This is a key advantage of earthenware. Sudden changes in temperature cause localized thermal expansion, this produces tension and compression that easily cracks most ceramics. But the porous nature of earthenware absorbs it much better. During initial testing I found better performance for glazed earthenware (vs. unglazed), but in later testing they proved to be fairly similar.

L3685X white slip (left mug) has 5% more frit than Y (right). The frit is a melter, creating more glass bonds to adhere it to the body (it also hardens it and darkens the color a little). But the frit also increases firing shrinkage, 'stretching' the white layer on the body as the kiln cools (the slightly curled bi-clay bar demonstrates that). However the glaze, G2931G, is under some compression (to prevent crazing), it is therefore 'pushing back' on the white slip. This creates a state of equilibrium. The Y slip on the right is outside the equilibrium, it flakes off at the rim because the bond is not good enough. Adding more frit, the other side of the balance, would put the slip under excessive tension, reducing ware strength and increasing failure on exposure to thermal shock (the very curled bi-clay bar in the front, not this clay/slip demonstrates the tension a poorly fitted slip could impose).

This terra cotta cup (center) is glazed with G2931G clear glaze (Ulexite based) and fired at cone 03. It survives 30 seconds under direct flame against the sidewall and turns red-hot before a fracture occurs (the unglazed one also survived 30 seconds, it only cracked, it did not fracture). The porcelain mug (Plainsman M370) is glazed with G2926B clear, it survived 15 seconds (even though it is much thinner). The porcelain is much more dense and durable, but the porous nature of the earthenware clearly withstands thermal shock much better. It is actually surprisingly durable.

These two glazes are both brilliant glass-like super-transparents. But on this high-iron stoneware only one is working. Why? G3806C (on the outside of the piece on the left) melts more, it is fluid and much more runny. This melt fluidity gives it the capacity to pass the micro-bubbles generated by the body during firing. G2926B (right) works great on porcelain but it cannot clear the clouds of micro-bubbles coming out of this body. Even the glassy smooth surface has been affected. The moral: You need two base transparents in which to put your colors, opacifiers and variegators. Reactive glazes need melt fluidity to develop those interesting surfaces. But they are more tricky to use and do not fire as durable.

The magic of this recipe is the 5% extra frit, that makes the melt more fluid and brilliant and gives the glaze more transparency where it is thinner on edges and contours. The extra iron in the Plainsman P380 (right) intensifies the green glaze color (vs. Polar Ice on the left). The specks are cobalt oxide agglomerates that were made by slurrying cobalt oxide and bentonite, then crushing it to sizes large enough to make the specks.

Both of these mugs were soaked 15 minutes at cone 6 (2200F), then cooled at 100F per hour to 2100F and soaked for 30 minutes and then cooled at 200F/hour to 1500F. This firing schedule was done to eliminate glaze defects like pinholes and blisters. Normally the GA6-A glaze crystallizes (devitrifies) heavily with this type of firing, but an addition of 1% tin oxide to the one on the left has prevented this behavior.

Typical zero-boron high temperature glazes will not soften in a 1500F decal firing. But low temperature glazes will (especially those high in boron). Even middle temperature ones can soften. G3806C, for example, is reactive and fluid, it certainly will. Even G2926B, which has high Al2O3 and SiO2, has enough boron to soften and sometimes create tiny pits. In serious cases they can bubble like the mug on the right. Why? Steam. It was in use and had been absorbing water in the months since it was first glaze fired at cone 03. The one on the left was not used, but it did have some time to absorb water from the air, it is showing tiny pits in the surface. Even if moisture is not present, low fire bodies especially may still have some gases of decomposition to affect the glaze. One more thing: Fire the decals at the recommended temperature, often cone 022.

These mugs are the same clay and glazed with a 50:50 raw:calcine Alberta Slip mix (GA10-A) and fired to cone 10R. Both looked like the one on the left. The one on the right has a decal on the inside, it was fired to 1500F. This firing has made the glaze significantly glossier, darker, deeper and more vibrant. Why? I have no idea. I have 20 more using this glaze and made from this and other clays, they all did the same thing.

This is not just a typical transparent cone 6 glaze with copper added. Knowing what is different about this clear base, its trade-offs and how it was developed are important. The porcelains are Plainsman P300 and M370. The liner glossy glaze is G2926B, it has a much lower melt fluidity than the outer glaze (as a functional transparent its main job is to fit the body and be hard and durable). But in order for that outer glaze to accommodate the copper and still be super glossy it must have a much higher melt fluidity. It was tricky to develop since that fluidity comes with high sodium and lower silica, that raises the thermal expansion and moves it toward crazing. See the recipe for more info.

Crystallization (also called devritrification). You can see the tiny crystals on the surface of this copper stained cone 6 glaze (G3806C). The preferred orientation of oxides in crystalline, especially when metal oxides are present. When kilns cool quickly there is simply no time for oxides in an average glaze to organize themselves and crystals do not grow. But if the glaze has a fluid melt and it cools slowly through the temperature at which the crystals like to form, they will.

This mug has thin walls and was bisque fired to cone 04 (so it had a fairly porosity). As a result the glaze went on thinner when it was dipped. This was not evident at the time of glazing but at firing the thinner sections produced the brown areas.

These mugs have just finished immersion into ice water from 300F. Twice. The LA Matt is crazing but the G2924 is still good. And its surface is more silky and more pleasant to the touch. It is whiter because of a 4% tin oxide addition. This is a glaze surface that would be excellent on most cone 6 porcelains. Remember, if you need to adjust the matteness, just add a little glossy to the batch.

This picture does not fully convey how much better the Ravenscrag is as a liner (vs. G1947U). It has depth and looks much richer. It course, it could be opacified somewhat to be whiter and would still retain the surface quality (as long is it is not too opaque). The body is Plainsman H450. The outside glaze is pure Alberta Slip.

The white engobe was applied by pouring at leather hard stage. The underglazes were also painted on at leather hard. The mugs were then dried, cleaned, bisque fired, dipping in clear glaze and final fired to cone 03. The clay and engobe have frit additions to make them vitrify at low temperatures.

If this happens you need to screen it. There is nothing unusual in the recipe, this can happen to any glaze that contains frits or other slightly soluble materials.

Brilliantly glossy. The body is Plainsman Polar Ice porcelain. Firing is cone 6 oxidation. The reduction fired effect is particles (or agglomerates) from one of the raw metal oxides in the recipe (iron, cobalt, rutile; most likely the cobalt). If this glaze were ball milled the effect would be lost. Even though the glaze is so glassy, it is not running down off at the foot. The blue where it thickens on contours is because of the rutile, this can be removed for a truer Celadon effect (if it is not causing the specks).

This is a talc body (Plainsman L213, about 50:50 talc:ball clay). They are fired to cone 04 (left), 03 (center) and 02. The glaze is G2931F, it fires crystal clear. Each of these cups has been subjected to "boiling water to ice water to boiling water" immersions. The cone 04 one crazed. The cone 02 cup cracked (the denser matrix could not withstand the shock) but did not craze (although it showed a hint of shivering). The center cup, fired at cone 03, is perfect.

These porcelain mugs were decorated with the same underglazes (applied at leather hard), then bisque fired, dipped in clear glaze and fired to cone 6. While the G2926B clear glaze (left) is a durable and a great super glossy transparent for general use, its melt fluidity is not enough to clear the micro-bubbles generated by the underglazes. G3806C (right) has a more fluid melt and is a much better choice to transmit the underglaze colors. But I still applied G2926B on the inside of the mug on the right, it has a lower thermal expansion and is less likely to craze.

But it is better not to. Left is an unglazed (but bisque fired) mug. Right is the same thing with with G2931F clear glaze fired on at cone 03 (G2931G would fit without crazing). Since the clay is not porous the glaze must be gelled to hang on and the ware needs to be heated before dipping (or it takes too long to dry). It also needs to be applied thicker. It is very difficult. It is better to use a fritted low fire porcelain and put the G2931F glaze on it.

B-Mix is a popular high-ball clay very plastic grey cone 10R stoneware in North America. The two mugs on the left have pure Ravenscrag Slip on the inside (the middle on the outside also), it fires almost transparent with a slightly silky surface. Pure Alberta Slip is employed on the outside of the left one and the inside of the right one. The outside of the right one is RavenTalc silky matte. In all cases the Ravenscrag and Alberta Slip are mixed half-and-half calcined and raw. B-Mix fires dark enough and with enough specks that a normal transparent glaze is not very interesting. But these Ravenscrag ones look much better (for liner glazes).

Left two mugs are pure Ravenscrag Slip, right is RavenTalc silky matte. The speckled mugs have 10% of an A1:St. Rose Red mix added.

Fired cone 10R. The one on the right contains 10% of Plainsman A1:St Rose Red mix to add speckle.

Left is Plainsman Zero3 stoneware fired at cone 03. Middle is Polar Ice fired at cone 6d. Right is Plainsman P600 fired at cone 10R. The same black and blue underglazes are used on all three, but each has its own transparent glaze (left G2931F, middle G3806C, right G1947U).

The body on the left has 10% burnt umber adding (Plainsman M340) and fires chocolate brown (right is standard M340). The manganese (in the umber) is greatly affecting the appearance of the glaze (GR6-L).

Decorate ware with the underglazes at the leather hard stage, dry and bisque fire it and then dip-glaze in a transparent that you make yourself (and thus control). These mugs are fired at cone 03. All have the same transparent glaze (G2931F), all were decorated with the same underglazes. Notice how bright the colors are compared to middle or high temperature. On the left is a porous talc/stoneware blend (Plainsman L212), rear is a fritted terra cotta (Plainsman Zero3 experimental) and right is a fritted porcelain. When mixed properly you can dip ware in this glaze and it covers evenly, does not drip and dries enough to handle in seconds! Follow the Zero3 firing schedule and you will have ware of amazing quality.

The mug was decorated with underglazes at the leather hard stage, then bisque fired to 1650F, then dip-glazed and fired to a cone 03 drop-and-hold firing schedule. This glaze is exceptionally brilliant and clear, it transmits the color of the underglazes better than any other glaze at any other temperature I have seen.

The mug on the left is Plainsman P600 (a #6 Tile kaolin based porcelain). The other is Zero3 Porcelain, fired at cone 03 (New Zealand kaolin plus frit). Alone the P600 mug looks good, but beside the Zero3 it looks drab. It is grey and not clearing the bubble clouds over the underglaze. The Zero3 withstands thermal shock better and it is as strong or stronger. It seems incredible that this could be when it is fired 13 cones lower! Grolleg kaolin based reduction porcelains compare better with the Zero3 body.

This is an all-fritted version of G2931F Zero3 transparent glaze. I formulated this glaze by calculating what mix of frits must be employed to supply the same chemistry of the G2931F recipe. The mug is made from the Zero3 porcelain body (fired at cone 03) with this glaze. This glaze fits both the porcelain and the Zero3 terra cotta stoneware. The clarity, gloss, fit and durability of this glaze are outstanding.

I melted these two 9 gram balls on tiles to compare their melting (the chemistry of these is identical, the recipes are different). The Ulexite in the G2931F (left) drives the LOI to more than 14%. That means the while the ulexite is decomposing during melting it is creating gases that are creating bubbles in the glass. Notice the size of the F is greater (because it is full of bubbles). While this seems like a serious problem, in practice the F fires crystal-clear on most ware.

These two glazes have the same chemistry but different recipes. The F gets its boron from Ulexite, and Ulexite has a high LOI (it generates gases during firing, notice that these gases have affected the downward flow during melting). The frit-based version on the right flows cleanly and contains almost no bubbles. At high and medium temperatures potters seldom have bubble issues with glazes. This is not because they do not occur, it is because the appearance of typical glaze types are not affected by bubbles (and infact are often enhanced by them). But at low temperatures potters usually want to achieve good clarity in transparents and brilliance in a colors, so they find themselves in the same territory as the ceramic industry. An important way to do this is by using more frits (and the right firing schedules).

The outer green glaze on these cone 6 porcelain mugs has a high melt fluidity. The liner glaze on the lower one, G2926B, is high gloss but not highly melt fluid. Notice that it forms a fairly crisp boundary with the outer glaze at the lip of the mug. The upper liner is G3806C, a fluid melt high gloss clear. The outer and inner glazes bleed together completely forming a very fuzzy boundary.

The outer glaze is Ravenscrag GR6-E Raspberry, the bright maroon color is a product of the surprising interaction between the 0.5% chrome oxide and 7.5% tin oxide present. That small amount of chrome is only enough to give the raw powder a slight greenish hue, hardly different than the clear liner. While this color mechanism appears to be effective, it is delicate. A maroon stain is actually a better choice. It would fire more consistent would be less hazardous to use. And the raw glaze will be the same color as the fired one!

These fritted porcelain bars are fired at cone 06, 04, 03 and 02 oxidation (bottom to top). The body contains 0.2% blue stain. Notice that almost no color develops at the lowest temperature. Glass development is needed.

Talc is employed in low fire bodies to raise their thermal expansion (to put the squeeze on glazes to prevent crazing). These dilatometer curves make it very clear just how effective that strategy is! The talc body was fired at cone 04, the stoneware at cone 6. The former is porous and completely non-vitreous, the latter is semi vitreous.

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://, All Rights Reserved