This is Zero3 porcelain made using Dragonite Halloysite (instead of New Zealand Halloysite). It is the L2934C recipe. It was fired to cone 03 and glazed with G2931K clear glaze (which has fired crystal clear and flawless). I fired at 1200F/hr to 1950F, held it for 15 minutes, cooled at 999F/hr to 1850F and held it for 30 minutes, then dropped as fast as the kiln would do. It has some translucency and fires with a purplish hue (the NZ burns blue-white and is more translucent).

2,3,4,5% rutile added to a 80:20 mix of Alberta Slip:Frit 3134 at cone 6. This variegating mechanism of rutile is well-known among potters. Rutile can be added to many glazes to variegate existing color and opacification.

Two glazes, same chemistry, different materials. The glaze on the left is sourcing CaO from wollastonite, the one on the right from calcium carbonate. Thus the oxide chemistry of the two is the same but the recipe of materials sourcing that chemistry is different. The difference in the melt flow you see here is an expression of how choosing different mineral sources to source an oxide can produce melting patterns that go outside what the chemistry suggests. The difference here is not extreme, but it can be much more. Glaze chemistry is relative, not absolute. It works best when you are changing material amounts, not material types. When you do introduce a very different mineral then you have a different system which has its own relative chemistry.

The same glaze with MgO sourced from a frit (left) and from talc (right). The glaze is 1215U. Notice how much more the fritted one melts, even though they have the same chemistry. Frits are predictable when using glaze chemistry, it is more absolute and less relative. Mineral sources of oxides impose their own melting patterns and when one is substituted for another to supply an oxide in a glaze a different system with its own relative chemistry is entered. But when changing form one frit to another to supply an oxide or set of oxides, the melting properties stay within the same system and are predictable.



Metallic oxides with 50% Ferro frit 3134 in crucibles at cone 6ox. Chrome and rutile have not melted, copper and cobalt are extremely active melters. Cobalt and copper have crystallized during cooling, manganese has formed an iridescent glass.

This is a 50:50 mix of calcine and raw Alberta Slip plus 5 parts Mason 6600 black stain, 5 Mason 6666 black and 7 iron.

This high boron cone 04 glaze is generating calcium-borate crystals during cool down (called boron-blue). This is a common problem and a reason to control the boron levels in transparent glazes; use just enough to melt it well. If a more melt fluidity is needed, decrease the percentage of CaO. For opaque glazes, this effect can actually enable the use of less opacifier.

This is what about 10% iron and some titanium and rutile can do in a transparent base glaze with slow cooling at cone 10R on a refined porcelain.

Example of a variegated wood ash glaze at cone 6 oxidation. It contains a small amount of cobalt as well as some rutile.

This is an example of serious crazing in a glaze. The lines have gotten darker with use of the bowl! That means the color is organic, from food. This cannot be healthy.

Courtesy of Angela Walford.

At cone 10R this produces an overly melted glaze. It also crazes.

Ravenscrag Slip is not ultra glossy but has a silky surface. It also contains some iron oxide and this colors the glaze somewhat. But the surface is much less sterile and pleasant to touch.

A broken test bar of ball clay fired to cone 10 reduction. Notice the black carbon core. Ball clays commonly contain carbon, many have a noticeable grey color in the raw state because of this. Notice it has not burned out despite the fact that the clay itself is still fairly porous, the firing was slow and the temperature reached was high. Ball clay typically does not comprise more than 30% of a body recipe so its opportunity to burn away is sufficient. However some specialized bodies have a much higher percentage.

Fired to cone 10 oxidation. Although feldspar is a key melter in high and medium temperature glazes, by itself it does not melt as much as one might expect.

A cone 8 comparative flow tests of Custer, G-200 and i-minerals high soda and high potassium feldspars. Notice how little the pure materials are moving (bottom), even though they are fired to cone 11. In addition, the sodium feldspars move better than the potassium ones. But feldspars do their real fluxing work when they can interact with other materials. Notice how well they flow with only 10% frit added (top), even though they are being fired three cones lower.

Cone 10 reduction fired crystallizing kaki glaze (about 12% iron oxide).

Fired on a porcelain in a gas kiln.

The glaze is a dolomite matte fired to cone 10R. High fire reduction is among the best processes to exploit the variegating magic of rutile.

Polymer plates are used in letter press and can still be purchased online (e.g. boxcarpress.com). Just create the artwork in a vector graphic drawing program and upload it to their website. Press it into a thin slab (using some sort of oil as a parting agent) and then attach that using slip to the item. After the piece is bisque fired apply the color and wipe it away from the high spots using a sponge. This is a celadon cone 10R glaze (about 3.5% iron oxide) on a buff firing reduction stoneware with G1947U transparent liner glaze. The brown in the logo is a tenmoku.

By Tony Hansen

Closeup of a crystalline glaze by Fara Shimbo. Crystals of this type can grow very large (centimeters) in size. They grow because the chemistry of the glaze and the firing have been tuned to encourage them. This involves melts that are highly fluid (lots of fluxes) with added metal oxides and a catalyst. The fluxes are normally B2O3, K2O and Na2O (from frits), the catalyst is zinc oxide (alot of it). Because Al2O3 stiffens glaze melts preventing crystal growth, it is very low in these glazes (clays and feldspars supply Al2O3, so these glazes have almost none). The firing has a highly controlled cooling cycle involving rapid descents and holds (sometimes multiple cycles of these). Between the cycles there are sometimes slight rises. Each discontinuity in the cooling curve creates specific effects in the crystal growth. Thousands of potters worldwide have investigated the complexities of the chemistry, the firing and the infinite range of metal oxides additions.

The top bar is a mix of calcium carbonate and a middle temperature stoneware clay (equal parts). On removal from the kiln it appears and behaves like a normal stoneware clay body, hard and strong. However, pour water on it and something incredible happens: in a couple of minutes it disintegrates. With lots of heat.

This bowl was made by Tony Hansen in the middle to late 1970s. The body was H41G (now H441G), it had large 20 mesh iron stone concretions that produced very large iron blotches in reduction firing. Luke Lindoe loved to use these clays to show off the power of the cone 10 reduction firing process that he was promoting in the 1960s and 70s.

Courtesy of Plainsman Clays.

This was used until about 2000. Any numbers relate to the type of clay being used (often a test). In this case, the body is a test mix of Plainsman H431. The year is 1981.

These are two 10 gram balls of Worthington Clear glaze fired at cone 03 on terra cotta tiles (55 Gerstley Borate, 30 kaolin, 20 silica). On the left it contains raw kaolin, on the right calcined kaolin. The clouds of finer bubbles (on the left) are gone from the glaze on the right. That means the kaolin is generating them and the Gerstley Borate the larger bubbles. These are a bane of the terra cotta process. One secret of getting more transparent glazes is to fire to temperature and soak only long enough to even out the temperature, then drop 100F and soak there (I hold it half an hour).

As the amount of defloccuant is increased the viscosity drops and the slurry becomes more and more fluid. However, at some point, the slurry will begin to become more viscous with increasing deflocculant percentages. This underscores the importance and tuning your casting slip recipes to avoid this problem. It is actually better to deflocculate to a point before the curve reaches its minimum (where the slop is still downward). This "controlled state of flocculation" enables the slip to gel after a period of time (to prevent sedimentation) and avoids the issues that come with over-deflocculation.

Crystals do not just grow on zinc glazes. These were fired by Bill Campbell. The glaze is lithium fluxed and colored with iron. There is a metallic halo around the crystal, the crystal is usually a hexagon.

First, the layer is very thick. Second, the body was only bisque fired to cone 06 and it is a raw brown burning stoneware with lots of coarser particles that generate gases as they are heated. Third, the glaze contains zircopax, it stiffens the melt and makes it less able to heal disruptions in the surface. Fourth, the glaze is high in B2O3, so it starts melting early (around 1450F) and seals the surface so the gases must bubble up through. Fifth, the firing was soaked at the end rather than dropping the temperature a little first (e.g. 100F) and soaking there instead.

Cone 10 gunmetal black alberta slip glaze with 5% Mason 666 stain

It is a public website at http://digitalfire.com/4sight. It is a materials-centric traditional ceramics knowledge-base for formulating, adjusting and fixes glazes and clay bodies. He has been maintaining it since the early 1990s (it is generated by a content management system he develops). It has thousands of pages and tens of thousands of interlinks, and hundreds of its pages rank top-ten on search engines (people often arrive and use it unknowingly). Digitalfire desktop Insight software and Insight-live.com give people the calculation and data storage tools they need to make the best use of this library.

The center portion was covered and so it lagged behind during drying, setting up stresses that caused the disk to crack. This test is such that most pottery clays will exhibit a crack. The severity of the crack becomes a way to compare drying performances. Notice the test also shows soluble salts concentrating around the outer perimeter, they migrated there from the center section because it was not exposed to the air.

Particle size distribution and root-of-two stack of sieves from 48-325 mesh

These are part of the procedure for the SHAB test. The length of the bars is entered into a recipe record in your account at insight-live.com. When Insight-live has these numbers it can calculate the drying and fired shrinkages.

Bottom: cone 2, next up: cone 02, next up: cone 04. You can see varying levels of maturity (or vitrification). It is common for terra cotta clays to fire like this, from a light red at cone 06 and then darkening progressively as the temperature rises. Typical materials develop deep red color around cone 02 and then turn brown and begin to expand as the temperature continues to rise past that (the bottom bar appears stable but it has expanded alot, this is a precursor to looming rapid melting). The top disk is a cone 10R clay. It shares an attribute with the cone 02 terra cotta. Its variegated brown and red coloration actually depends on it not being mature, having a 4-5% porosity. If it were fired higher it would turn solid chocolate brown like the over-fired terra cotta at the bottom.

1971, the year I met him. He was the founder of Plainsman Clays. My dad had just built the factory for him and I began working there in 1972. He was a well known potter and sculptor at the time. He got me started along the fascinating road of understanding the physics of clays. He was a true "plains man", interested in the geology (notice the skulls, these inspired the Plainsman logo). I loved testing all the lumps of clay he brought back from his expeditions. John Porter, his partner and an art school trained British potter, was his partner at the time. I spent alot of time learning from John and he got me started on the chemistry that led to Insight software.

Drying disks used for the DFAC test are 12cm in diameter and 5mm thick (wet). A crack pattern develops in almost all common pottery clays as they shrink during drying. This happens because the center portion is covered and stays soft while the perimeter dries hard. This sets up a tug-of-war with the later-drying inner section pulling at the outer rigid perimeter and forcing a crack (starting from the center). If the clay has high plasticity and dry strength it can pull so hard from the center that cracks appear at the outer dried edge to relieve the tension. Or, it can create cracks that run parallel to the outer edge but at the boundary between the inner and outer sections. The nature, number and width of the cracks are interpreted to produce a drying factor that can be recorded.

By preparing these three tests you can measure many properties of a clay body. These include drying shrinkage, fired shrinkage, porosity, drying performance, soluble salts content, water content and LOI.

If you are at all serious about testing glazes and clay bodies, you need one of these. There are other methods, but nothing else comes close to this. These are expensive new, this one was more than $1000. But you can get them used on ebay.com. I adapted a mount (to give it vertical adjustment) from a hardware store. Propellers are also expensive, but you can design and 3D print them yourself or have them printed at a place like shapeways.com.

This melt flow tester demonstrates how zircon opacifys but also stiffens a glaze melt at cone 6. Zircon also hardens many glazes, even if used in smaller amounts than will opacify.

Insight installs on your Linux, Windows or Mac computer. It provides a very interactive way to comparing two recipes and their calculated formulas or analyses. As you make changes in the recipe you can see how it impacts the recipes. It is ideal for demonstrating concepts like unity, analysis, formula, mole%, LOI, formula-to-batch conversion.

Desktop Insight can calculate the LOI of a recipe based on the LOIs it knows of the individual materials in the recipe. But sometimes you need to impose an LOI to force a calculated analysis to match an actual measured LOI in the lab.

The LOI appears below the material name and alternative names (beside the weight). The formula that goes with that LOI is the bold numbers in the blanks beside the oxide names on the right.

Desktop Insight was the first to enable users to compare two recipes and their formulas side-by-side and interactively update when recipe changes were made. It also enabled users to show formulas and analyses side-by-side.

Dialometric chart produced by a dilatometer. The curve represents the increase in thermal expansion that occurs as a glass is heated. Changes in the direction of the curve are interpreted as the transformation (or transition) temperature, set point and softening point (often quoted on frit data sheets). When the thermal expansion of a material is quoted as one number (on a data sheet), it is derived from this chart. Since the chart is almost never a straight line one can appreciate that the number is only an approximation of the thermal expansion profile of the material.

Albany Slip was a pure mined material, Alberta Slip is a recipe of mined materials and refined minerals designed to have the same chemistry, firing behavior and raw physical appearance.

The coarsest screen is at the top, the finest on the bottom. The opening for each is shown on the label. They are chosen such that each successive screen going down has an opening that is about half the area of the one above it. Using this series you can produce a practical measurement of the distribution of particle sizes in ceramic materials and bodies used in traditional ceramics (structural products industries, like brick, measure coarser particles than this, starting at perhaps 10 mesh and ending at 70). The 325 screen on the bottom is only used sometimes, it is difficult to finer-that-325 particles to pass through it because it blinds. It is not possible to shake powder through sieves that are this fine, samples must be washed through.

This is an example of crystallization in a high MgO matte. MgO normally stiffens the glaze melt forming non-crystal mattes but at cone 10R many cool things happen with metal oxides, even at low percentages. Dolomite and talc are the key MgO sources.





Example of a dunting crack in a flat deep cone 6 porcelain bowl. The bowl has a wide bottom that heat-sinks to the shelf, so during firing there is a temperature gradient between the walls and the base. That difference in temperature translates to stress because it means that different parts of the piece are experiencing different thermal contractions as it cools in the kiln.

Bloating in an over fired middle temperature high iron raw clay (Plainsman M2). It is still stable, dense and apparently strong at cone 4 (having 1.1% porosity). But between cone 6 and 7 (top bar) it is already bloating badly. Such clays must be fired at low enough temperatures to avoid this volatility (if accidentally over fired). This clay only reaches a minimum of 1% porosity (between cone 4 and 5), it is not possible to fire it to zero porosity. This is because of the particulate gas-producing particles (it is ground to 42 mesh only).

This cone 6 white glaze is crawling on the inside and outside of a thin-walled cast piece. This happened because the thick glaze application took a long time to dry, this extended period, coupled with the ability of the thicker glaze layer to assert its shrinkage, compromised the fragile bond between dried glaze and fairly smooth body. To solve this problem the ware could be heated before glazing, the glaze applied thinner, or glazing the inside and outside could be done as separate operations with a drying period between.

Examples of various sized grogs from CE Minerals, Christy Minerals, Plainsman Clays. Grogs are added to clays, especially those used for sculpture, hand building and industrial products like brick and pipe (to improve drying properties). The grog reduces the drying shrinkage and individual particles terminate micro-cracks as they develop (larger grogs are more effective at the latter, smaller at the former). Grogs having a narrower range of particle sizes (vs. ones with a wide range of sizes) are often the most effective additions. Grogs having a thermal expansion close to that of the fired body, a low porosity, lighter color and minimal iron contamination are the most sought after (and the most expensive).



Wood fired test samples. Made in the Medalta kiln in Medicine Hat, Alberta, Canada.

Fired to cone 13 in a Manabigama wood fired kiln.

Cone plaques and cones from a cone 10R firing at Plainsman Clays.

Handles expose all sides to the air and dry (and therefore shrink) much more quickly than the walls. Anything you can do to slow them down will produce a more even drying process.

These disks concentrate the solubles on the outer edge (because of the way they are dried). Soluble salts can enhance the visual appeal of a fired clay but they can also do the opposite.

Simple propeller mixer with mount and switch (this 1/3 hp mixer can handle up to 10 gallons).

Several things are needed for high silica glazes to crystallize as they cool. First a sufficiently fluid melt in which molecules can be mobile enough to assume their preferred connections. Second, cooling slowly enough to give them time to do this. Third, the slow cooling needs to occur at the temperature at which this best happens. Silica is highly crystallizable, melts of pure silica must be cooled very quickly to prevent crystallization. But Al2O3, and other oxides, disrupt the silicate hexagonal structure, making the glaze more resistant to crystallization.



This is unlike some raw materials which melt suddenly.





Example of sedimentation test to compare soluble salts water extracts from suspended clay. This simple test also reveals ultimate particle size distribution differences in clays that a sieve analysis cannot do.

This is a Gerstley Borate based recipe (45%) melted in crucibles at increasing temperatures. Although the recipe is well melted at cone 2, it is still not fluid enough to enable their migration in the time available. By contrast, the melt at the upper temperature is much less viscous, enabling all bubbles to completely clear on the thinner sections. If this glaze were applied to ware it would be in a thin layer and the bubbles would likely clear at cone 6. Not to be ignored is the degree to which the thousands of bubbles passing upward through the melt have helped to mix the melt and remove discontinuities in the cone 7 and 8 specimens.

Materials are not always what their name suggests. These are Lincoln Fireclay test bars fired from cone 6-11 oxidation and 10 reduction (top). The clay vitrifies progressively from cone 7 upward (3% porosity at cone 7 to 0.1% by cone 10 oxidation and reduction, bloating by cone 11). Is it a really fireclay? No.

Example of serious glaze shivering using G1215U low expansion glaze on a high silica body at cone 6. Be careful to do a thermal stress test before using a transparent glaze on functional ware.

The referred to surface is the outside of this large bowl. The base glaze (inside and out) is GA6-D Alberta Slip glaze fired at cone 6 on a buff stoneware. The thinness of the rutile needs to be controlled carefully, the only practical method to apply it is by spraying. The dramatical effect is a real testament to the variegating power of TiO2. An advantage of this technique is the source: Titanium dioxide instead of sourcing TiO2 from the often troublesome rutile.

The Copper Red effect shows the importance of correct firing to achieve a specific effect with certain glaze recipes. The inside of this vase was more heavily and consistently reduced, simply because it was isolated somewhat from the outside kiln atmosphere. The outside of the vase, by contrast, is grey (a product of periods of oxidation during the firing).

This cone 6 white opacified glaze has an addition pigment-bearing granular mineral to create speckle (e.g. illmenite, manganese granular, ironstone concretions). This speckling mechanism can be transplanted into almost any glaze. Unfortunately, the metallic particles that produce the speck are often heavy and settle quickly in the glaze slurry. This can be prevented somewhat by flocculating the slurry.

This is cone 6 an oxidation transparent glaze having enough flux (from a boron frit or Gerstley Borate) to make it melt very well, that is why it is running. Iron oxide has been added (around 5%) producing this transparent amber effect. Darker coloration occurs where the glaze has run thicker. These are all simple mechanisms, which, once understood, can be transplanted into other glazes. This glaze is also crazing. This commonly occurs when the flux used is high in K2O and Na2O (the highest expansion fluxing oxides). K2O and Na2O produce the brilliant gloss. They come from feldspars, nepheline syenite and are high in certain frits.

This is the G2571A base dolomite matte recipe. The specimen on the left adds 4% tin and 1% iron oxide. The one on the right has 4% tin oxide and 0.5% iron oxide.





These fire ivory to bone with in reduction.

This is a base recipe that was originally used for electrical insulators on a 25% porcelain recipe. Since most porcelains and whitewares used in high fire ceramics have this same type of formulation, this glaze recipe has proven to work well. It is not highly fluid, so if refractory colorants are added extra flux may be needed.

This is GA6-C Alberta Slip glaze with 4, 5 and 6% rutile. At 6% the rutile crystallization has advanced to the point of completely opacifying the glaze. Even 5% is too much.

Mold that has grown on pugged clay in a bag.

Amazing mold (actually sprouting leaves) that has grown on pugged clay after 10 months of storage where there is sunlight.

These glazes are both 80% Alberta Slip, but the one on the right employs 20% Ferro Frit 3249 accelerate the melting (whereas the left one has 20% Frit 3134). Even though Frit 3249 is higher in boron and should melt better, its high MgO stiffens the glaze melt denying the mobility needed for the crystal growth.

Courtesy of Susan Clarke

This is happening because this glaze lacks flux and is not fluid enough to enable their migration. In the upper half they are more evident (double thickness).

This reduction celadon is crazing. Why? High feldspar. Feldspar supplies the oxides K2O and Na2O, they contribute to brilliant gloss and great color (at all temperatures) but the price is very high thermal expansion. Any glaze having 40% or more feldspar should turn on a red light! Thousands of recipes being traded online are high-feldspar, some more than 50%! There are ways to tolerate the high expansion of KNaO, but the vast majority are crazing on all but high quartz bodies. Crazing is a plague for potters. Ware strength suffers dramatically, pieces leak, the glaze harbours bacteria, crazing invites customers to return pieces. The fix: A transparent base that fits your ware. Add colorants and opacifiers to that. Another fix: substitute some of the KNaO for a lower expansion flux (like MgO, SrO, CaO, Li2O) and add as much SiO2 and Al2O3 as the glaze will take (using glaze chemistry software).

An example of how the same dolomite cobalt blue glaze fires much darker in oxidation than reduction. But the surface character is the same. A different base glaze having the same colorant might fire much more similar. The percentage of colorant can also be a factor in how similar they will appear. The identity of the colorant is important, some are less prone to differences in kiln atmosphere. Color interactions are also a factor. The rule? There is none, it depends on the chemistry of the host glaze, which color and how much there is.

It is not just iron oxide that changes character from oxidation to reduction. Of course, cobalt can fire to a bright blue in oxidation also, but this will only happen if its host glaze is glossy and transparent. In this case the shift to reduction has altered the character of the glaze enough so that its matte character subdues the blue.

This is 100% of the pure material. Notice how the iron is fluxing it more on the left, it is beginning to run. And how the reduction atmosphere amplifies the color of the iron (by changing it to the metallic state).

In the glaze on the left (90% Ravenscrag Slip and 10% iron oxide) the iron is saturating the melt crystallizing out during cooling. GR10-K1, on the right, is the same glaze but with 5% added calcium carbonate. This addition is enough to keep most of the iron in solution through cooling, so it contributes to the super-gloss deep tenmoku effect instead of precipitating out.

This occurs as they cool in the kiln. The slower the cooling and the more iron oxide there is, the bigger and more plentiful these crystals will be.

Particles from each category in a particle size distribution test of Skagit Fireclay

Ball clays are normally refractory, none of these are vitrified to any extent. The cone 10R bar is yellow because it is stained by the soluble salts present in the material.

Example of dunting, where a crack has released the stresses produced by uneven thermal contraction during cool-down in the kiln. This usually happens by cooling too quickly through quartz inversion.

An example of what 5% tin oxide does in a transparent boron cone 6 glaze (G2884) on a dark firing clay body

The oxidation bars (lower) are typical of most ball clays. They burn off-white and darken slightly in color as they approach maturity (above cone 10). Ball clays are fairly refractory, often as much more more than common fireclays. Ball clays almost always have some soluble salts and these reveal themselves in reduction firing (top bar).

Ball clay and kaolin test bars side-by-side fired from cone 9-11 oxidation and 10 reduction.



This cone 10R glaze, a tenmoku with about 12% iron oxide, demonstrates how iron turns to a flux in reduction firing and produces a glaze melt that is much more fluid. In oxidation, iron is refractory and does not melt well (this glaze would be completely stable on the ware in an oxidation firing at the same temperature, and much lighter in color).

This one can take more temperature than most. It looks OK at cone 5 (bottom bar). But at cone 6 bloating (bubbles) begin to occur. This body, while smooth to the touch, contains some iron and sulphate particulates that generate gases during firing, these are the catalyst for the bloating (the clay matrix becomes dense enough that it can no longer vent the gases of decomposition through it).

With a simple open shape like this a thin wall (2-3mm) bowl can be cast in minutes and removed from the mold in minutes more. No other method can produce such thin and even ware with this kind of ease.

How can there be so many colors? Because iron and oxygen can combine in many ways. In ceramics we know Fe2O3 as red iron and Fe3O4 as black iron (the latter being the more concentrated form). But would you believe there are 6 others (one is Fe13O19!). And four phases of Fe2O3. Plus more iron hydroxides (yellow iron is Fe(OH)3).

Example of glaze crawling on the inside of a stoneware mug. Notice how thick it is. Thickly applied glazes have more ability to assert their shrinkage during drying and thus compromise their bond with the body below. The cracks that appear become bare patches after firing.

The concentrations are not serious and are typical of what you might find on a commercial body.

Low temperature clays are far more likely to have this issue. And if present, it is more likely to be unsightly. The salt-free specimens have 0.35% added barium carbonate.

Example of two crawling glazes. Both have magnesium carbonate added to make this happen (around 10%). On the left at cone 04 on a terra cotta body, on the right at cone 6 on a porcelain. Magnesium carbonate also mattes glazes.

These are very hard, high in iron and can be as large as volkswagens. Tiny iron concretion particles cause specking in fired ware, especially in reduction.

This is an example of two types of crystals that have formed on the surface of a fritted glaze after a long period of storage (Ferro Frit 3249 in this case). Frits are formulated to give chemistries that natural materials cannot supply. To do that they have to push the boundaries of stability (solubility). Any frit that has an inordinately high amount (compared to natural sources) of a specific oxide (in this case MgO) or lacks Al2O3 (like Frit 3134) are suspect.

Stull chart showing the SiO2-Al2O3-(0.7CaO+0.3KNaO) system

Phase diagram and stull chart showing the SiO2-Al2O3-(0.7CaO+0.3KNaO) system. Courtesy of Matthew Katz, Alfred University

Five different brand names of iron oxide at 4% in G1214W cone 5 transparent glaze. The glazes have been sieved to 100 mesh but remaining specks are still due to agglomeration of particles, not particle size differences.

Both of them employ raw bentonite to augment the plasticity and both have about 50% kaolin in the recipe. The Grolleg body requires more bentonite (because it is much less plastic than #6 tile). In spite of the fact that the raw bentonite has a high iron content and it darkens the color, the Grolleg porcelain is still much whiter.

An example of how iron stone concretions contained within two clay bodies (a white and brown stoneware) blossom and produce speckle at cone 10 reduction.

The glaze on the right is crawling at the inside corner. Multiple factors contribute. The angle between the wall and base is sharper. A thicker layer of glaze has collected there (the thicker it is the more power it has to impose a crack as it shrinks during drying). It also shrinks more during drying because it has a higher water content. But the leading cause: Its high raw clay content increases drying shrinkage. Calcining part of the raw clay is an effective way to deal with this. Or doing a little chemistry to source some Al2O3 from other materials than clay.

An example of how a liner glaze can meet another at the rim of a piece. This it quite simple to do. The technique is especially practical where mug walls are thin and cannot absorb enough water to dry the glaze after immerse-dipping. It is essential where the outer glaze is potentially leachable, or it might craze (which tenmokus often do). Thus, that straight line at the rim is not only a decorative element, it is the spot where leaching, crazing, staining and cutlery marking stop.

The liner is G2571A dolomite matte.

This is Plainsman H550 and P700. The inside glaze is G1947U. They were fired in 10 reduction.

Tenmoku mug with throwing rings.

A buff stoneware (left) and brown speckled stoneware (right). Notice that the iron specks crystallize in a manner similar to the edges of contours.

An example of a foot ring in a cone 10 reduction mug (it was tooled and sponged at the leather hard stage). It has channels to drain water in the dish washer.

Its shape, growth during the firing and penetration of glaze down into the crack demonstrates it preexisted firing (happened during the drying).

Right: Alberta slip is almost a Tenmoku glaze by itself at cone 10 reduction. To go all the way only 1-2% more iron is needed (plus a little extra flux for melt fluidity, perhaps 5% calcium carbonate). Compare that to crow-baring a clear glaze into a tenmoku (left): This is G1947U plus 11% red iron oxide. That produces a slurry that is miserable to work with (it stains everything it comes into contact with) and turns into a jelly on standing.

Fired from cone 8-11 and 10 reduction (bottom to top).

In Medicine Hat, Alberta, Canada. Designed by Aaron Nelson.

In Medicine Hat, Alberta, Canada. Designed by Aaron Nelson.

The rutile blue variegation effect is fragile. It needs the right melt fluidity, the right chemistry and the right cooling (during firing). This is Alberta Slip GA6C recipe on the right (normal), the glaze melt flows well due to a 20% addition of Ferro Frit 3134 (a very low melting glass). On the left Boraq has been used as the flux (it is a calcium borate and also melts low, but not as low as the frit). It also contains significant MgO. These two factors have destroyed the rutile blue effect!

This is Alberta Slip (GA6C) on the left. Added frit is melting the Alberta Slip clay to it flows well at cone 6 and added rutile is creating the blue variegated effect (in the absence of expensive cobalt). However GA6D (right) is the same glaze with added Tin Oxide. The tin completely immobilizes the rutile blue effect, it brings out the color of the iron (from the rutile and the body).

The first is on GA6-A, the rest are on GA6-C (Alberta slip glazes). The last has been applied too thickly, the brown band is dry and blistered.

Testing for pinholes and dimples is often best done using a transparent glaze over a large surface and looking at the surface in the light. In this case, an open bowl is used. Heavy pieces like this are difficult to fire evenly and encourage under fired areas where pinholes are more likely to appear.

This was built just after the turn of the 20th century and was one of about 25 at the Alberta Clay Products company. A ceramic industry quickly grew in the city when it was discovered that it had the magic ingredients: Good clay, natural gas, plenty of water, a dry climate and industrious people.

Made in southern Alberta around 1960. These are massive. They were hand constructed.

These are made from Plainsman M340 and have transparent glazes. Notice the grey color of reduction vs. the yellowish of oxidation.

At cone 5R pure Alberta Slip (left) is beginning to melt and flow down the runway of this tester. It is producing a matte gunmetal surface. Pure Ravenscrag Slip (right) is just starting (it needs frit to develop melt fluidity at this temperature). The iron in the Alberta Slip is melting it because of the reduction atmosphere in the kiln (it does not move like this in oxidation).

Cone 6 iron bodies that fire non-vitreous and burn tan or brown in oxidation can easily go dark or vitreous chocolate brown (or even melting and bloated in reduction). On the right is Plainsman M350, a body that fires light tan in oxidation, notice how it burns deep brown in reduction at the same temperature. This occurs because the iron converts to a flux and the glass development that occurs brings out the dark color. On the left is Plainsman M2, a raw high iron clay that is quite vitreous in oxidation, but in reduction it is bloating badly. When reduction bodies are this vitreous there is a much great danger of black coring.

Example of Alberta Slip which has been sprayed on dry ware and single fired. This happened because the slip shrunk during drying creating a network of cracks. These cracks become the crawl-points during firing.

It was spray applied on the dried bowl (no bisque fire) an was too thick (not to mention under fired). But the main problem was a glaze recipe having too high a clay content. If a glaze has more than about 25% clay, consider a mix of the raw clay and calcined. For example, you can buy calcined kaolin to mix with raw kaolin. Or you can calcine the clay in bowls in your kiln by firing it to about 1200F.

Both mugs have the same cone 6 oxidation high-iron (9%), high-boron, glossy glaze. Iron silicate crystals have completely invaded the surface of the one on the right, turning the near-black glossy into a yellowy matte. Why? Three things. It was slow-cooled and the other free-fall-cooled (firings done in the same kiln). The glaze has a fluid melt (it runs) and its percentage of iron is high enough that it could precipitate out from solution in the melt (given the time). Susceptible glazes have a temperature at which crystals form the best and that temperature can be hundreds of degrees down from the firing cone (or higher if precipitation is occurring). In industry, devitrification is regarded as a defect. But potters call it crystallization. Understanding (especially the chemistry and materials) and experimental firings are needed to learn to control and exploit the effect in a glaze.

An example of how water can start a split in a plastic clay. This complete process occurred in about 1 minute.

Adding a little blue stain to a medium temperature transparent glaze can give it a more pleasant tone. Some iron is present in all stoneware bodies (and even porcelains), so transparent glazes never fire pure white. At cone 10 reduction they generally exhibit a bluish color (left), whereas at cone 6 they tend toward straw yellow (right). Notice the glaze on the inside of the center mug, it has a 0.1% Mason 6336 blue stain addition; this transforms the appearance to look like a cone 10 glaze (actually, you might consider using a little less, perhaps 0.05%). Blue stain is a better choice than cobalt oxide, the latter will produce fired speckle.

The glaze is cutlery marking (therefore lacking hardness). Why? Notice how severely it runs on a flow tester (even melting out holes in a firebrick). Yet it does not run on the cups when fired at the same temperature (cone 10)! Glazes run like this when they lack Al2O3 (and SiO2). The SiO2 is the glass builder and the Al2O3 gives the melt body and stability. More important, Al2O3 imparts hardness and durability to the fired glass. No wonder it is cutlery marking. Will it also leach? Very likely. That is why adequate silica is very important, it makes up more than 60% of most glazes. SiO2 is the key glass builder and it forms networks with all the other oxides.

Example of various materials mixed 75:25 with volclay 325 bentonite and fired to cone 9. Plasticities and diring shrinkages vary widely. Materials normally acting as fluxes (like dolomite, talc, calcium carbonate) are refractory here because they are fired in the absence of materials they react normally with.

Examples of calcium carbonate (top) and dolomite (both mixed with 25% bentonite to make them plastic enough to make a test bars). They are fired to cone 9. Both bars are porous and refractory, even powdery. However, put either of these in a mix with other ceramic minerals and they interact strongly to become fluxes.

A comparison of the plasticity of Volclay 325 Bentonite:Silica 25:75 (top) and Hectalite 200:Silica 50:50. Both are mixed with silica powder. The latter (a highly refined bentonite) is much less plastic even though it is double the percentage in the recipe.

Body is Plainsman P580. Far left: G2894 Ravenscrag Tenmoku with 10% whiting and 10% iron oxide added. Center: Pure Alberta Slip plus 5% whiting and 1% iron oxide. Right: Pure Alberta Slip plus 5% whiting and and 2% iron. The Alberta Slip versions are less messy to use because so much less iron is needed (iron also causes the slurry to gel). The Ravenscrag and higher iron Alberta Slip versions are running, they are too fluid. The rust colored crystals are not developing the way they did with these glazes on an iron stoneware (in the same firing).

All of these are on a cone 10 reduction fired iron stoneware (Plainsman H443). Far left: G2894 Ravenscrag Tenmoku with 10% whiting and 10% iron oxide added. Center: Pure Alberta Slip plus 5% whiting and 1% iron oxide. Right: Pure Alberta Slip plus 5% whiting and and 2% iron. The Alberta Slip versions are less messy to use because so much less iron is needed (iron also causes the slurry to gel). The Ravenscrag version is running, it is too fluid. Likely 5% calcium carbonate would be enough (and maybe less iron).

GR10-J Ravenscrag silky matte (right) and G2571A matte (left) on a dark burning iron speckled stoneware at cone 10R. Surfaces have identical feel (the chemistries are very close). The former fires a little darker color because of the iron contributed by the Ravenscrag Slip.

GR10-J Ravenscrag silky matte (right) and G2571A matte (left) on a buff stoneware at cone 10R. Surfaces feel identical, the slightly darker color is due to iron content in the Ravenscrag. The former was formulated to mimic the latter using as much Ravenscrag Slip as possible yet still maintain the same chemistry.

GR10-G Silky magnesia matte cone 10R (Ravenscrag 100, Talc 10, Tin Oxide 4). This is a good example silky matte mechanism of high MgO. The Ravenscrag:Talc mix produces a good silky matte, the added tin appears to break the effect at the edges.

Electron micrograph showing Dragonite Halloysite needle structure. For use in making porcelains, Halloysite has physical properties similar to a kaolin. However it tends to be less plastic, so bodies employing it need more bentonite or other plasticizer added. Compared to a typical kaolin it also has a higher fired shrinkage due to the nature of the way its particles densify during firing. However, Dragonite and New Zealand Halloysites have proven to be the whitest firing materials available, they make excellent porcelains.

The 80:20 base Alberta slip base becomes oatmeal when over saturated with rutile or titanium (left:6% rutile, 3% titanium; right:4% rutile, 2% titanium right). That oatmeal effect is actually the excess titanium crystallizing out of solution in the melt as the kiln cools. Although the visual effects can be interesting, the micro-crystalline surface is often susceptible to cutlery marking and leaching. This is because the crystals are not as stable or durable as the glass of the glaze.

A nice thing about this is that the percentage of metallic oxide is comparatively low compared to other metallic glazes. And, it is iron oxide, which is not toxic at all.

This shows the soluble salts in the material and the characteristic cracking pattern of a low plasticity clay. Notice the edges have peeled badly during cutting, this is characteristic of very low plasticity.

This is a cone 11 oxidation melt flow test. Shown (left to right) are the new shipment of Cornwall Stone 2011, the L3617 calculated equivalent (a recipe, see link), the older Cornwall shipment we have been using and the H&G substitute 2011 (far right, mislabelled on the picture). These do not flow well here, a small frit addition is needed to better compare them. However they have melted enough to see some differences in whiteness and degree of melt. Notice the L3617 is more like the old Cornwall than the new Cornwall is.

These flow tests demonstrate how similar the substitute recipe (left) is to the real material (right). 20% Frit 3134 has been added to each to enable better melting at cone 5 (they do not flow even at cone 11 without the frit). Links below provide the recipe for the substitute and outline the method of how it was derived using Digitalfire Insight software. This substitute is chemically equivalent to what we feel is the best average for the chemistry of Cornwall Stone.

This 1000 ml 24 hour sedimentation test compares Plainsman A2 ball clay ground to 10 mesh (left) with that same material ball milled for an hour (right). The 10 mesh designation is a little misleading, those are agglomerates. When it is put into water many of those particles break down releasing the ultimates and it does suspend fairly well. But after 24 hours, not only has it settled completely from the upper section but there is a heavy sediment on the bottom. But with the milled material it has only settled slightly and there is no sediment on the bottom. Clearly, using an industrial attrition ball mill this material could be made completely colloidal.

This test shows the incredible dry shrinkage that a ball clay can have. Obviously if too much of this is employed in a body recipe one can expect it to put stress on the body during drying. Nevertheless, the dry strength of this material far exceeds that of a kaolin and when used judiciously it can really improve the working properties of a body giving the added benefit of extra dry strength.

Large particle kaolin (left) and small-particle ball clay (right) DFAC drying disks demonstrate the dramatic difference in drying shrinkage and performance between these two extremes (these disks are dried with the center portion covered to set up a water content differential to add stresses that cause cracking). These materials both feel super-smooth, in fact, the white one feels smoother. But the ultimate particles tell the opposite story. The ball clay particles (grey clay) are far smaller (ten times or more). The particles of the kaolin (white) are flatter and lay down as such, that is why it feels smoother.

Cone 10R firing of Plainsman FireRed (left), St. Rose Red 42 mesh (center) and St. Rose Red 10 mesh (right). The 10 mesh material produces a reduction speckle and deep red color that is very unique.

These are DFAC drying performance tests of Plainsman A2 ball clay at 10 mesh (left) and ball milled (right). This test dries a flat disk that has the center section covered to delay its progress in comparison to the outer section (thus setting up stresses). Finer particle sizes greatly increase shrinkage and this increases the number of cracks and the cracking pattern of this specimen. Notice it has also increased the amount of soluble salts that have concentrated between the two zones, more is dissolving because of the increased particle surface area.

These are porosity and fired shrinlage test bars, code numbered to have their data recorded in our group account at Insight-live.com. Plainsman P580 (top) has 35% ball clay and 17% American kaolin. H570 (below it) has 10% ball clay and 45% kaolin, so it burns whiter (but has a higher fired shrinkage). P700 (third down) has 50% Grolleg kaolin and no ball clay, it is the whitest and has even more fired shrinkage. Crysanthos porcelain (bottom, from China) also only employs kaolin, but at a much lower percentage, thus is has almost no plasticity (suitable for machine forming only). Do H570 and P700 sacrifice plasticity to be whiter? No, with added bentonite they have better plasticity than P580. Could that bottom one be super-charged? Yes, 3-4% VeeGum or Bentone (smectite, hectorite) would make it the most plastic of all of these (at a high cost of course).

Melt flow test comparing Custer Feldspar from Feb/2012 (right) with Mar/2011. Custer Feldspar does not melt like this by itself at cone 10. It was mixed 80:20 Feldspar:Ferro Frit 3134. This test demonstrates that the material has been very consistent between these two shipments.

Yes. The two specimens are both the same Grolleg-based porcelains. Both of them are glazed with the same glaze: 1947U transparent. But the glaze on the left is using EP Kaolin and the one on the right Grolleg kaolin. The Grolleg glaze is dramatically better, the color has a bluish cast that is more attractive. The Grolleg does not suspend the slurry as well, however it responds well to gelling (using vinegar, for example) more than compensating to create an easy-to-use suspension.

An example of how a glaze that contains too much plastic has been applied too thick. It shrinks and cracks during drying and is guaranteed to crawl. This is raw Alberta Slip. To solve this problem you need to tune a mix of raw and calcine material. Enough raw is needed to suspend the slurry and dry it to a hard surface, but enough calcine is needed to keep the shrinkage low enough that this cracking does not happen. The Alberta Slip website has a page about how to do the calcining.

A hydrometer is being used to check the specific gravity of a ceramic casting slip in a graduated cylinder. Common traditional clay-containing ceramic slips are usually maintained around 1.75-1.8. In this case the slurry was too heavy, almost 1.9. Yet it is very fluid, why is this? It has both too much clay and too much deflocculant. While it is possible to use such a slip, it will not drain as well and it will gel too quickly as it stands. It is better to settle for a lower specific gravity (where you can control the thixotropy and it is easier to use). It might have been better to simply fill a 100cc cylinder and weigh it to get the specific gravity (slurries that are very viscous do not permit hydrometers to float freely).

In this instance, the slurry forms a skin a few minutes after the mixer has stopped. Casting recipes do not travel well. Over-deflocculation is a danger when simply using the percentage of water and deflocculant shown. Variables in water electrolytes, solubles in materials, mixing equipment and procedures, temperature and production requirements (and other factors) necessitate adapting recipes of others to your circumstances. Add less than the recommended deflocculant to try and reach the specific gravity you want. If the slurry is too viscous (after vigorous mixing), then add more deflocculant. At times, more than what is recommended in your recipe will be needed. After all of this you will be in a position to lock-down a recipe for your production. However flexibility is still needed (for changing materials, water, seasons, etc).

Right: Ravenscrag GR6-A transparent base glaze. Left: It has been opacified (turned opaque) by adding 10% Zircopax. This opacification mechanism can be transplanted into almost any transparent glaze. It can also be employed in colored transparents, it will convert their coloration to a pastel shade, lightening it. Zircon works well in oxidation and reduction. Tin oxide is another opacifier, it is much more expensive and only works in oxidation firing.

Make cone 10R bamboo colors using the GR10-J Ravenscrag silky matte base recipe (right) and adding 1% iron (left), (0.5% centre). These samples are porcelain. This iron addition also works using the G2571A matte base recipe.

Calcined Alberta Slip (right) and raw powder (left). These are just 5 inch cast bowls, I fire them to cone 020 and hold it for 30 minutes. Why calcine? Because for glazes having 50% or more Alberta Slip, cracking on drying can occur, especially if it is applied thick (Alberta Slip is a clay, it shrinks). I mix 50:50 raw:calcine for use in recipes. However, Alberta Slip has an LOI of 9%, so I need to use 9% less of the calcine powder (just multiply the amount by 0.91). Suppose, I needed 1000 grams: I would use 500 raw and 500*.91=455.

It contains no iron but does have a little cobalt. The ash is about 50%, with 20% kaolin and 25% feldspar and a little rutile. However your ash will be different so you will have to do your own development program.

This Wood ash glazed cup has been fired at cone 6. It was the product of a development project, a series test recipes having the objective of maximizing the percentage of ash. Obviously, it contains a little iron to stain it brown, this brings out the variegation better. Ash generally contains low percentages of Al2O3, a critical oxide needed for stable glass development. I added kaolin (about 20%) to suspend the slurry (it supplies Al2O3 also). Ashes contain lots of fluxing oxides, but they still may need a little help to melt a glaze at cone 6, I added feldspar (it also supplies needed Al2O3). If that is not enough, I add a little gerstley borate or a borax frit like Ferro 3124. If crazing occurs silica is needed. In the end I got a recipe with about 50% ash.

Example of the variegation produced by layering a white glaze of stiffer melt (a matte) over a darker glaze of more fluid melt (a glossy). This was fired at cone 6. The body is a stoneware and the glazes employ calcium carbonate to encourage bubbling during melting, each bubble reveals the color and texture of the underlying glaze layer.

This material storage area employs a rack to keep pails off the floor so the area can be hosed down easily. The materials in each pail are sealed in plastic bags or the pail is covered with a lid.

These mugs have experienced very serious shivering. This is an Albany Slip glaze with 10% lithium carbonate, it is known to have a very low thermal expansion. This problem can be solved by reducing the amount of lithium or adding high-expansion sodium or potassium. However these fixes will likely affect the appearance.

It fires very evenly from top to bottom and front to back. We have used it for quality control to fire thousands of porosity and shrinkage test bars to monitor the maturity of the clay bodies. Oh, we also fire pottery in this!

Courtesy of Bailey Kilns.

These have already been measured to deduce drying shrinkage. After firing they will be measured again to calculate the firing shrinkage. Then they will be weighed, boiled in water and weighed again to determine the water absorption. Fired shrinkage and absorption are good indicators of body maturity.

A three pan sample-splitter. Powdered clay is poured into the top and split, half going into each pan below. The cycle is repeated until the desired sample size is achieved. The objective is a representative sample for particle size distribution tests.

On Plainsman H443 iron stoneware in reduction firing. Notice Tin does not work. Also notice that between 7.5 and 10% Zircopax provides as much opacity as does 15% (Zircon is very expensive).

The recipe is GA6-C. These are from the same firing (slower cooling is needed to develop the rutile effect).

GR10-K1 Cone 10R Ravenscrag Tenmoku (right) compared to Tenmoku made from Alberta Slip (left, it is 91% Alberta Slip with 5% added calcium carbonate and 2% iron oxide). Left is Plainsman P700 porcelain, right is H570. Tenmokus are popular for the way they break to a crystalline light brown on the edges of contours.

GR10-K1 Ravenscrag tenmoku (left) compared to Alberta Slip tenmoku GA10-B (center) and pure Alberta Slip (right).

(50:50 Ravenscrag Slip:Alberta Slip) at cone 10R on porcelain (right) and stoneware (left).

A cone 10R sculpture clay containing 40% ball clay, 10% kaolin, 10% low fire redart (for color and maturity), some quartz and 25% 20x48 grog. This fine grained base produces a body that feels smoother than it really is and is very plastic. It is even throwable on the wheel.

On a white stoneware and a porcelain. The glaze is transparent, it has depth and varies in shade according to thickness, breaking to a much lighter shade on the edges of contours.

GA6-C (left) and GA6-E (right) at cone 6 oxidation. The E version adds 4% spodumene onto the 4% rutile in the C (the base is 80% Ravenscrag Slip and 20% frit 3134). This glaze requires slower cooling. It looks the best on dark bodies.

It is a powerful glaze flux, variegator and crystalizer, a colorant of many characters in bodies and glazes and a specking agent like no other. And it is safe and cheap!

This liner glaze is 10% calcium carbonate added to Ravenscrag slip. Ravenscrag Slip does not craze when used by itself as a glaze at cone 10R on this body, so why would adding a relatively low expansion flux like CaO make it craze? It does not craze when adding 10% talc. This is an excellent example of the value to looking at the chemistry (the three are shown side-by-side in my account at Insight-live.com). The added CaO pushes the very-low-expansion Al2O3 and SiO2 down by 30% (in the unity formula), so the much higher expansion of all the others drives the expansion of the whole way up. And talc? It contains SiO2, so the SiO2 is not driven down nearly as much. In addition, MgO has a much lower expansion than CaO does.

Look at recipes before wasting time and money on them. Are they serious? This is a cone 6 melt flow comparison between a matte recipe, found online at a respected website, and a well-fluxed glossy glaze we use often. Yes, it is matte. But why? Because it is not melted! Matte glazes used on functional surfaces need to melt well, they should flow like a glossy glaze. How does that happen? This recipe has 40% nepheline syenite. Plus lots of dolomite and calcium carbonate. These are powerful fluxes, but at cone 10, not cone 6! To melt a cone 6 glaze boron, zinc or lithia are needed. Boron is by far the most common and best general purpose melter for potters (it comes in frits and gerstley borate, colemanite or ulexite; industry uses more boron, zinc and lithia frits). The lesson: Look at recipes before trying them.

True functional mattes have fluid melts, like glossy glazes. They need this in order to develop a hard, non-scratching durable glass. The mechanism of the matte on the right is high Al2O3 (G1214Z), it is actually melting more than the glossy glaze on the left (G1214W).

Melt flow test comparing two cone 6 iron red glazes fired to and cooled quickly from cone 6. Iron reds have very fluid melts and depend on this to develop the iron red crystals that impart the color. Needless to say, they also have high LOI that generates bubbles during melting, these disrupt the flow here.

G2896 Ravenscrag plum red iron red cone 6 glaze.

Both are highlighted by Alberta Slip GA6-A glaze on these cone 6 oxidation fired mugs.

Ravenscrag iron plum reds, the one on the right was cooled slower and did not develop the color.

Zinc oxide calcined (left) and raw (right) in typical crystalline glaze base (G2902B has 25% zinc) on typical cone 6 white stoneware body. This has been normally cooled to prevent crystal development. The melting pattern is identical. Note how badly these are crazed, this is common since crystalline glazes are normally high in sodium.

A closeup of a cone 10R rutile blue (it is highlighted in the video: A Broken Glaze Meets Insight-Live and a Magic Material). Beautiful glazes like this, especially rutile blues, often have serious issues (like blistering, crazing), but they can be fixed.

Example of a lamination that has occurred in a fired stoneware body at cone 10 oxidation.

The cone 6 G1214M glaze on the left melts well. Can it benefit from a silica addition? Yes. The right adds 20% yet still melts as well, covers better, is more glossy, more resistant to leaching, harder and has a lower thermal expansion.

And it contains no cobalt! Fairly close in appearance to the classic cone 6 floating blue recipe used across North America, this is a variation of the Alberta Slip Rutile Blue glaze (except this adds 1% tin oxide, 1% black copper oxide and 2% ceramic rutile, it is GA6-C1). Because of the melt fluidity, it thins on the edges of contours and breaks to the color of the underlying body. It looks best on dark bodies, but if thick it is OK on light ones also.

Crazing in glazes is common in this type of ware but since the body is fired well into vitrification this is not considered an problem (the unique aesthetics of this type of ware trump such issues). Salt glazes, by their very nature, are high in sodium. And it has a high thermal expansion.

An example of an unfinished foot ring (on a salt glazed mug). This technique is popular with many potters.

A closeup of a glossy Cone 6 glaze having 4% added copper carbonate. The bottom section has leached in lemon juice after 24 hours. This photo has been adjusted to spread the color gamut to highlight the difference. The leached section is now matte.

Alberta Slip (50:50 calcine:raw mix) with 1, 2, 3, 4 and 5% added Mason 6666 black stain. Fired at cone 10R. Semi-gloss blacks are produced. Increasing stain percentage above about 3% does not darken the color appreciably.

An example of how calcium carbonate can cause blistering as it decomposes during firing. This is a cone 6 Ferro Frit 3249 based transparent (G2867) with 15% CaO added (there is no blistering without the CaO). Calcium carbonate has a very high loss on ignition (LOI) and for this glaze, the gases of its decomposition are coming out at the wrong time. While there likely exists a firing schedule that takes this into account and could mature it to a perfect surface, the glaze is high in MgO, it has a high surface tension. That is likely enabling bubbles to form and hold better.

An example of how a carbonate can cause blistering. Carbonates produce gases during decomposition. This glaze (G2415B) contains 10% lithium carbonate, which likely pushes the initial melting temperature down toward the most active decomposition temperatures.

2,5,10,15% talc added to Ravenscrag Slip on a buff stoneware fired at cone 10R. Matting begins at 10%. By Kat Valenzuela.

This is a buff stoneware clay. Crystal development toward a dolomite matte begins at 15%. By Kat Valenzuela.

Pure Ravenscrag Slip is glaze-like by itself (thus tolerating the alumina addition while still melting as a glaze). It was applied on a buff stoneware which was then fired at cone 10R (by Kat Valenzuela). This same test was done using equal additions of calcined alumina. The results demonstrated that the hydrated version much more readily decomposes to yield its Al2O3, as an oxide, to the glaze melt. By 15% it is matting and producing a silky surface. However crazing also starts at 10%. The more Al2O3 added the lower the glaze expansion should be, so why is this happening? It appears that the disassociation is not complete, some of the raw material remains to impose its high expansion.

The Ravenscag:Alumina mix was applied to a buff stoneware fired at cone 10R (by Kat Valenzuela). Matting begins at only 5% producing a very dry surface by 15%. The matte is simply a product of the refractory nature of the alumina as a material, it does not disassociate in the melt to yield its Al2O3 as an oxide (as would a feldspar, frit or clay). The same test using alumina hydrate demonstrates that it disassociates better (although not completely).

A cone 11 oxidation firing schedule used at Plainsman Clays (maintained in our account at insight-live.com). Using these schedules we can predict the end of a firing within 5-10 minutes at all temperatures. We can also link schedules to recipes and report a schedule so it can be taken to the kiln and used as a guide to enter the program.

Bloating. These teapots have been refired to cone 6.

This 1 gallon heavy crock was fired to cone 6 (at 108F/hr during the final 200 degrees) and soaked 20 minutes (in a electric kiln). The bare clay base should be the color of the top test bar (which has gone to cone 6). Yet, it is the color of the bottom bar (which has gone to cone 4)! That means the base only made it to cone 4. The vertical walls are the right color (so they made cone 6). It may seem that this problem could be solved by simply firing with a longer hold at cone 6. But electric kilns heat by radiation, that base will never reach the same temperature as the sidewalls!

Example of the lignite particles in a fireclay (Pine Lake) that have been exposed on the rim of a vessel after sponging. This is a coarse clay, but if it were incorporated into a recipe of a stoneware, glaze pinholing would be likey.

A crock being jiggered by Jim Etzkorn in 2013 at the historic Medalta Potteries in Medicine Hat, Alberta.

The plastic porcelain has 6% drying shrinkage, the coarse stoneware has 7%. They dried side-by-side. The latter has no cracking, the former has some cracking on all handles or bases (the lower handle is completely separated from the base on this one). Why: The range of particle sizes in the stoneware impart green strength. The particles and pores also terminate micro-cracks.

The whitest test bar here is a New-Zealand-kaolin-based cone 6 porcelain (employs VeeGum for plasticity). Immediately to the left of it are three North American-koalin-based bodies using standard bentonites. The bar to is right in a Grolleg based body that uses a standard bentonite rather than a white burning one. All are plastic.

The cone 6 glazes on the left have double the boron of those on the right so they should be melting much more. But they flow less because they have much higher Al2O3 and SiO2 contents. This effect renders them milky white vs. the transparent of those on the right. Why? Because G and H are trapping micro-bubbles because of the increased viscosity of the melt. In spite of this, the two on the left do fire almost transparent when applied to ware, they have enough fluidity to shed most of the bubbles when in a thin layer. The ones on the right are too fluid, they will run excessively on ware unless applied thinly. The sweet-spot is a little more fluidity than those on the left. But there is another very important factor: Durability. The increased Al2O3 in G and H make them fire harder, more resistant to abrasion. The added SiO2 adds resistance to leaching.

These are thick pieces, they need time for heat to penetrate. Both were soaked 15 minutes at cone 6 (2195F in our test kiln). But the one on the left was control-cooled to 2095F degrees and soaked 45 more minutes. Pinholes and dimples are gone, the clay is more mature and the glaze is glossier and melted better. Why is this better than just soaking longer at cone 6? As the temperature rises the mineral particles decompose and generate gases (e.g. CO2, SO4). These need to bubble through the glaze. But on the way down this activity is ceasing. Whatever is gassing and creating the pinholes will has stopped by 2095F. Also, these are boron-fluxed glazes, they stay fluid all the way down to 1900F (so you could drop even further before soaking).

Stoneware at cone 02? Yes. These test bars are fired to cone 02. The top body is 50:50 Redart and a silty raw material from Plainsman Clays (named 3D) plus some bentonite and 1% iron. The bottom one also has 5% Ferro Frit 3110. The porosity: The bottom one is 3%, the top one 8%. So each 1% frit reduces the porosity by 1% in this case.

This body is made from approximately 50:35:15 ball clay:talc:silica:silica sand. These test bars are fired from cone 2 to 9 oxidation (bottom to top) and 10 Reduction and from them the porosity and fired shrinkage can be measured (shown for each bar). Notice that the fired shrinkage is pretty stable from cone 2 to 8, but accelerates at cone 9 oxidation. But in reduction this stage has not been reached yet. The same thing happens with porosity, the cone 9 bar is dramatically more dense than the cone 8 one. But in reduction, it is still porous.

The stunning cone 10R Ravenscrag bamboo glaze (GR10-J plus 0.5% iron oxide) on a Grolleg porcelain. Up close it can feel and look like a fine wood surface (when used on a porcelain). The cone 10 recipes page at Ravenscrag.com has more info.

A cone 6 stoneware with 0.3% 60/80 mesh manganese granular (Plainsman M340). Fired from cone 4 (bottom) to cone 8 (top). It is normally stable to cone 8, with the manganese it begins to bloat at cone 7. The particles of manganese generate gases as they decompose and melt, these produce volumes and pressures sufficiently suddenly that closing channels within the maturing body are unable to vent them out.

Soak the firing 30 minutes to mature the mug and the planter will not mature. Soak 2 hours for the planter and the glaze may melt too much and the clay be too vitreous. This is a troublesome issue with electric kilns. Furthermore, they employ radiant heat. That means that sections of ware on the shady side (or the under side) will never reach the temperature of those on the element side no matter how long you soak.

Same body, same glaze. Left is cone 10 oxidation, right is cone 10 reduction. What a difference! This is a Ravenscrag Slip based glaze on a high-fire iron stoneware. In reduction, the iron oxide in the body and glaze darkens (especially the body) and melts much more. The behavior of the tin oxide opacifier is also much different (having very little opacifying effect in reduction).

The terra cotta (red earthenware) body on the upper left is melting, it is way past zero porosity, past vitrified. The red one below it and third one down on the right have 1% porosity (like a stoneware), they are still fairly stable at cone 2. The two at the bottom have higher iron contents and are also 1% porosity. By contrast the buff and white bodies have 10%+ porosities. Terra cotta bodies do not just have high iron content to fire them red, they also have high flux content (e.g. sodium and potassium bearing minerals) that vitrifies them at low temperatures. White burning bodies are white because they are more pure (not only lacking the iron but also the fluxes). The upper right? Barnard slip. It has really high iron but has less fluxes than the terra cottas (having about 3% porosity).

This cobalt underglaze is bleeding into the transparent glaze that covers it. This is happening either because the underglaze is too highly fluxed, the over glaze has too high of a melt fluidity or the firing is being soaked too long. Engobes used under the glaze (underglazes) need to be formulated for the specific temperature and colorant they will host, cobalt is known for this problem so it needs to be hosted in a less vitreous engobe medium. When medium-colorant compounds melt too much they bleed, if too little they do not bond to the body well enough. Vigilance is needed to made sure the formulation is right.

The white slip on the left is an adjustment to the popular Fish Sauce slip (L3685A: 8% Frit 3110 replaces 8% Pyrax to make it harder and fire-bond to the body better). The one on the right (L3685C with 15% frit) is becoming translucent, obviously it will have a higher firing shrinkage than the body (a common cause of shivering at lips and contour changes). The slip is basically a very plastic white body. Since these are not nearly as vitreous as red ones at low fire they need help to mature and a frit is the natural answer. With the right amount the fired shrinkage of body and slip can be matched and the slip will be opaque. This underscores the need to tune the maturity of an engobe to the body and temperature. Although zircon could be added to the one on the right to opacify and whiten it, that would not fix the mismatch in fired shrinkage between it and the body.

This is G2415J Alberta Slip glaze on porcelain at cone 6. Why did the one on the right crawl? Left: thinnest application. Middle: thicker. Right thicker yet and crawling. All of these use a 50:50 calcine:raw mix of Alberta Slip in the recipe. While that appears fine for the two on the left, more calcine is needed to reduce shrinkage for the glaze on the right (perhaps 60:40 calcine:raw). This is a good demonstration of the need to adjust raw clay content for any glaze that tends to crack on drying. Albertaslip.com and Ravenscrag.com both have pages about how to calcine and calculate how much to use to tune the recipe to be perfect.

Which one of these samples weighs more, the raw lump form of the clay or after it has been ground into a powder? Wrong. It is the lumps. Even though there is all that empty air space between those lumps, there is even more air spaces in the powder. The top one weighs 1662 grams (there is a 500g counter-weight barely visible), the bottom one is 1255. The finer I grind it the lighter it will be. If I were to fill in all the voids between the lumps on the top one with smaller sized lumps I could get alot more weight yet! It works the same on the ultimate particle level, when we combine powders of varying particle sizes we get a more dense and stronger dried product.

These are two cone 6 transparent glazed porcelain mugs with a light bulb inside. On the left is the porcelainous Plainsman M370 (Laguna B-Mix 6 would have similar opacity). Right is a zero-porosity New Zealand kaolin based porcelain called Polar Ice (from Plainsmanclays.com also)! The secret to making a plastic porcelain this white and translucent is not just the NZ kaolin, but the use of a very expensive plasticizer, VeeGum T, to enable maximizing the feldspar to get the fired maturity.

These were fired to cone 06, about 1800F. Of course, there is normally some shrinkage so the bisque piece would be a little smaller. Even though the matrix is very porous and is under developed, the iron in the body is already beginning to impose its color.

Wrong. These tiny spheres (actually they are not so tiny) form over time as a precipitate in a glaze having a high concentration of a boron frit and mixed in hard water. This may be an example of how interactions can affect the degree to which materials dissolve in water (in this case the electrolyte in the water could be a trigger).

These flakes have been screened from a highly fritted boron glaze mixed using hard water and stored for a year. They formed as a film across the top of the settled surface.

These two mugs have the Alberta Slip base cone 6 GA6-A glaze on the inside. The left one is cooled normally (kiln off at cone 6 after soak). For the mug on the right the kiln has been soaked for half an hour at 1800F on the way down. This was done to develop the rutile blue glaze on the outside, but during this period crystallization occurred on the inside. If you need to cool slow (for the Alberta Slip rutile blue) but would like the transparent liner, add 0.5-1% tin oxide to the GA6-A to impede crystal growth.

Two mugs have dried. The clay on the left shrinks 7.5% on drying, the one on the right only 6%. Yet it consistently cracks less! Not the slightest hairline crack, not even at the handle joins. Why? Green or dry strength. If the dry clay matrix has the strength it can resist cracking even if there are stresses from uneven drying. The clay on the right is made using Kentucky ball clay, which has good plasticity but fairly low drying strength. The clay on the left is a native terra cotta, very plastic and very strong in the green state (likely double or triple the white clay). To demonstrate further: If paper fiber were added to the white clay, it would not crack. Why? Not because it would shrink less with the added fiber, no, the shrinkage would stay the same. Increased strength imparted by the fiber would give it the power to resist cracking.

This is water from the top of a glaze that had been sitting for more than a year. Clearly, the solute contains iron. It is being dissolved out of one or more of the white powders making in the glaze recipe, so the iron at least is a contaminant. This should be thrown out and replaced with clean water. Why? We do not want anything dissolved in glaze slurries. It either migrates into the body with the water it absorbs during glazing or it migrates to the surface as the water evaporates. Both are bad. How much dissolved material would be lost? It would be measured in tenths or hundreds of a gram. Hypothetically then, if a bucket contains 1000 grams of the material, one ten-thousandth of it would be lost!

This is the Ravenscrag slip cone 6 base (GR6-A which is 80 Ravenscrag, 20 Frit 3134) with 10% Mason 6006 stain. Notice how the color is white where it thins on contours, this is called "breaking". Thus we say that this glaze "breaks to white". The development of this color needs the right chemistry in the host glaze and it needs depth to work (on the edges the glaze is too thin so there is no color). The breaking phenomenon has many mechanisms, this is just one. Interestingly, this transparent base has more entrained micro-bubbles than a frit-based glaze, these enhance the color effect.

It is made from 96.5% calcined alumina and 3.5% Veegum (to provide plasticity for forming). At cone 6, with no prior firing to a higher temperature, a 5mm thick slice can support a mug like this, demonstrating how refractory alumina is. You can make larger shelves, big enough for small electric kilns, however, since you likely do not have a furnace to fire these as high as they should be fired to sinter them properly (for hot strength), remember to support larger spans in the center to prevent sagging. Also note that alumina does not have nearly the thermal shock resistance that cordierite has (which, by the way, you can also make yourself if you can fire to 1350C).

This mug is pinging loudly and literally self-destructing in front of my eyes! Why? The glaze is under so much compression (the inside is pushing outward, the outside inward). Spiral cracks are developing all the way up the side. Small razor-sharp flakes are shivering off convex contours. Why? I accidentally fired a low-temperate talc body at cone 6 (the glaze is the Alberta Slip base cone 6 glossy). The clay body is not overly mature, but it just has an extremely high thermal expansion (talc is added to increase the expansion to fit low fire commercial glazes, they would craze without it). Shivering is serious, it is a mismatch of thermal expansion between body and glaze. It can happen at any temperature.

Fired to cone 10R (top) and 7,8,9,10 oxidation (from bottom to top).

This is a grog clay with 25% Christy Minerals STKO22S grog (20 mesh one size). This piece is about 8 inches tall fired at cone 10R. This body is a Redart, Ball clay base that totally vitrifies to a chocolate brown. But with the added refractory grog it is fairly stable in the kiln and is much more vitreous than other grog bodies. Because it is such a plastic smooth base and because the grog is only one size, this is actually throwable. And it is very resistant to splitting during hand building.

A transparent glazed. It is a made from Plainsman Polar Ice in 2014 (a New Zealand kaolin based porcelain) and fired to cone 6 with G2926B clear glaze. 5% Mason 6306 teal blue stain was added to the clay, then this was wedged only a few times. The piece was thrown, then trimmed on the outside at the leather hard stage and sanded on the inside when dry.

These DFAC drying performance disks show that minor additions of grog do not reduce the fired shrinkage of this medium fire stoneware much. Nor do they improve its drying performance. In this example, a 10% addition has not reduced shrinkage appreciably nor has it improved drying performance. The 20% addition has reduced the shrinkage and narrowed the crack, but it is still there and resembles the zero-grog version.

These bowls were made by Tony Hansen using a mixture of white and stained New-Zealand-kaolin-based porcelain (Plainsman Polar Ice) fired at cone 6. The body is not only white, but very translucent.

Recipes show us the materials in a glaze but formulas list oxide molecules and their comparative quantities. Oxides construct the fired glass. The kiln de-constructs ceramic materials to get the oxides, discards the carbon, sulfur, etc. and builds the glass from the rest. You can view glazes as recipes-of-materials or as formulas-of-oxides. Why use formulas? Because there is a direct relationship between the properties a fired glaze has (e.g. melting range, gloss, thermal expansion, hardness, durability, color response, etc) and the oxides it contains (links between firing and recipe are much less direct). There are 8-10 oxides to know about (vs. hundreds of materials). From the formula viewpoint materials are sources-of-oxides. While there are other factors besides pure chemistry that determine how a glaze fires, none is as important. Insight-live automatically shows you the formulas of your recipes and enables comparing them side-by-side. Click the "Target Formula" link (on this post at digitalfire.com) to see what each oxide does.

Wow, just threw this mug from a porcelain having 10% Veegum plasticizer (of course no one could afford that, it is $15 a pound). But anyway, I was testing the extreme. These mugs did not twist during throwing, I could have pulled the wall thinner at the middle and top. The wall thickness at the bottom is 2.3mm (less than 3/32")! This mug is 15cm (6 in) tall. One problem: It takes forever to dry.

Example of a rutile-iron stained glaze. Rather than crystallizing to form the visual effect, the rutile is forming a phase separation that produces the streaking blue in the amber background glass.

Left: 4% rutile in the Alberta Slip:frit 80:20 base. This glaze has been reliable for years. But suddenly it began firing like the center mug! Three 5 gallon buckets of glaze (of differing ages) all changed at once. We tried every combination of thickness, firing schedule, clay body, ventilation, glazing method on dozens of separate pieces with no success to get the blue back. Even mixed a new batch, still no color. Finally the 'crow bar' method worked, 0.25% added cobalt oxide (right mug). It is identical ... amazing. It is not the same mechanism to get the color and it is not exactly the same, but worked while we figured out the real issue: the firing schedule (the secret turned out to be cooling, soaking, then slow cooling to 1400F).

Two bisqued terracotta mugs. The clay on the right has 0.35% added barium carbonate (it precipitates salts dissolved in the clay to prevent them coming to the surface with the water and being left there during drying). The process is called efflorescence and is the bane of the brick industry. The one on the left is the natural clay. The unsightly appearance is fingerprints from handling the piece in the leather-hard state, the salts have concentrated in these areas (the other piece was also handled, but has very little marking).

Using this rubber mold I have just made 8 - 12" bats and I still have 20 lbs of plaster left in the bag! Just just weigh 1600 grams plaster, dump it in 1120 grams of water, wait 4 minutes, mix 4 minutes and pour. As soon as the water at the top disappears, dump the next batch of plaster in the water and repeat (by the time the next plaster is ready to pour you can remove the last bat from the mold). If you are in a drier climate and make wide shapes, especially with a porcelainous clay, using a plaster bat is an excellent way to get even drying and avoid cracking. Using a BatMate you can stick them down to the wheel very hard, yet they are easy to get off. I would never use any other bat than these. You can buy one at Plainsman Clays for $75 plus shipping.

Like this! This terra cotta clay vitrifies here at 1957F (cone 03). This problem is common in many terra cotta materials but can also surface in others. Barium carbonate can be used to precipitate the salts inside the clay matrix so they do not come to the surface on drying.

50:50 Alberta Slip:Ravenscrag Slip cone 10R celadon on iron stoneware, buff stone and porcelain.

These two close-ups of a fired cone 6 porcelain showing a big difference in surface smoothness. The deaired material on the right has a much smoother fired surface even though the non-deaired material on the left has been wedged much more. The transparent glaze does not hide the roughness.

An excellent example that demonstrates the brittleness typical of vitrified terra cotta bodies. This bowl was fired to cone 02 and rung like a tuning fork when struck with a spoon. The body is dense like a porcelain and at appeared to be incredibly strong (this body is much more vitreous than an average terra cotta would be). However after a few more taps with the spoon it broke in two! It is brittle! Very hard, but brittle. At first I thought it might be that the glaze is under compression, but when I dropped the halves they did not shatter in the manner characteristic of compressed glaze, and they broke with razor sharp edges (like a vitrified porcelain does). So firing for this body must stop short of the most dense matrix possible to avoid this brittleness.

Left: What GA6-C Alberta Slip rutile blue used to look like. Middle: When it started firing wrong, the color was almost completely lost. Right: The rutile effect is back with a vengeance! What was the problem? We were adjusting firing schedules over time to find ways to reduce pinholing in other glazes and bodies. Our focus was slowing the final stages of firing and soaking there. In those efforts the key firing phase that creates the effect was lost: it happens on the way down from cone 6. This glaze needs a drop-and-soak firing (e.g. cooling 270F from cone 6, soaking, then 150F/hr drop to 1400F).

Cone 03 white stoneware with red terra cotta ball-milled slip and transparent overglaze. These are eye-popping stunning. They are test L3685U (Ferro frit 3110, #6 tile kaolin, Silica), near the final mix for a white low fire stoneware. The G1916J glaze is super clear. Why? Two reasons. These were fired in a schedule designed to burn off the gases from the bentonite in the body before the glaze fuses (it soaks the kiln for 2 hours at 1400F). Terra cotta clays generate alot of gases at cone cone 03 (producing glaze micro-bubbles), but here the terra cotta is only a thin slip over the much cleaner burning white body.

I poured 4 teaspoons of two glazes onto a board and let them sit for a minute, then inclined the board. The one with Gleason Ball clay (right, much higher in coal and finer particle size) has settled and the water on the top of running off. The one with Old Hickory #5 ball clay has not settled at all and the whole thing is running downward. Below I have begun to sponge them off. Old Hickory No. 1 Glaze Clay is even better than #5 for suspension. The most amazing thing about this: There is only 7% ball clay in the recipe.

The underglaze is G1214M cone 6 black (adds 5% Mason 6666 black stain). Overglaze left: GR6-H Ravenscrag Oatmeal. Overglaze right: GA6-F Alberta Slip oatmeal. Both produce a very pleasant silky matte texture (the right being the best). Both layers are fairly thin. In production it would be best to spray the second layer, keeping it as thin as possible. It is also necessary to adjust the ratio of raw to calcined Alberta or Ravenscrag Slips to establish a balance between drying hardness but not too much drying shrinkage (and resultant cracking).

This little pot on the left is more than it appears. Both of these samples were fired at cone 01 and clear glazed in the green state (without bisquing). The one on the right, a typical unprocessed native terra cotta clay, is full of pinholes, the one on the left has none. But the one on the left has been pre-processed by mother nature: it is from a thick layer of clay found below a bog in northern Alberta. It has 21% water content, you just cut a piece out, wedge it and throw a pot! Although it contains some particulate, it is highly plastic yet dries well and fires to a dense stoneware-like hardness 11 cones lower than we normally make stoneware at.

This is GR6-H Ravenscrag oatmeal over G1214M black on porcelain at cone 6 oxidation to create an oil-spot effect. Both were dipped quickly. You can find more detail at ravenscrag.com.

This cone 6 brown functional stoneware has been fired across a range of temperatures. Cone 4 is too porous. From cone 7 it is expanding and density is not improving, it will likely warp or bloat. Cone 7 is losing the red color, there is no room for over-firing (by accident). The porosity at cone 6 is so much better than cone 5 and color is still stable. Therefore, cone 6 is the one we want.

Some terra cotta clays can be used to produce stoneware by firing them a few cones higher. Terra Cottas are almost always nowhere near vitrified at their traditional cone 04-06 temperatures, so they can often stand much higher firing. However, clear glazes do not usually work well in higher firing since products of decomposition from the vitrifying body fill them will microbubbles, clouding the surface. In addition, the body turns dark brown under clear glazes. But with a white glaze, these are not a problem. This is Plainsman L210 fired to cone 2. The glaze is 80% Frit 3195, 20% kaolin and 10-12% zircopax, it fires to a brilliant flawless surface.

Wrong! That is what the glaze was made of that was in this bucket. The scum on the inside is so hard that it is extremely difficult to remove, even using a scraper or a scrubber. Even lime-a-way does not remove it all. This is an example of how water-soluble materials can be. When this glaze settles out the water on top is brown (like this scum) yet all the material powders are white! So it is not surprising that glaze viscosity changes over time and things dissolve and impact rheology.

This DFAC drying performance test compares a typical white stoneware body (left) and the same body with 10% added 50-80 mesh molochite grog. The character of the crack changes somewhat, but otherwise there appears to be no improvement. While the grog addition reduces drying shrinkage by 0.5-0.75% it also cuts dry strength (as a result, the crack is jagged, not a clean line). The grog vents water to the surface better, notice the soluble salts do not concentrate as much. Another issue is the jagged edges of the disk, it is more difficult to cut a clean line in the plastic clay.

This is Ravenscrag Slip Oatmeal over a 5% Mason 6666 stained glossy clear at cone 6. You have to be careful not to get the overglaze on too thick, I did a complete dip using dipping tongs, maybe 2 seconds. Have to get it thinner so a quick upside-down plunge glazing only the outside is the the best way I think. You may have to use a calcined:raw mix of Ravenscrag for this double layer effect to work without cracking on drying.

These 1 mm-sized crystals were found precipitated in a couple of gallons of glaze containing 85% Ferro Frit 3195. They are hard and insoluble. Why and how to do they form? Many frits are slightly partially soluble and the degree to which they are are related to the length of time the glaze is in storage, the temperature, the electrolytes and solubles in the water and interactions with other material particles present. The solute then interacts with other materials particles to form insoluble species that crystallize and precipitate out as you see here. These crystals can be a wide range of shapes and size and come from leaded and unleaded frits.

This cast bowl (just out of the mold and dried) is 130mm in diameter and 85mm deep and yet the walls are only 1mm thick and it only weighs 89 gm! The slip was in the mold for only 1 minute. What slip? A New Zealand Halloysite based cone 6 translucent porcelain. This NZ material is fabulous for casting slips (it needs a little extra plasticizer also to give the body the strength to pull away from the mold surface as it shrinks).

Cone 6 transparent glaze testing to fit Plainsman M370: Left and right: Perkins Studio Clear. The far left one is a very thick application. Center: Kittens Clear. The porcelain for all is Plainsman P300. Why? Because P300 is much more likely to craze the glaze because it has a lower silica content (about 17% and only kaolin whereas M370 has 24% silica plus the free quartz that comes with the 20% ball clay it also contains). If a thick layer works on P300 it is a shoe-in to fit M370. If it also passes the oven:icewater test.

The green boxes show cone 6 Perkins Studio Clear (left) beside an adjustment to it that I am working on (right). I am logged in to my account at insight-live.com. In the recipe on the right, code-numbered G2926A, I am using the calculation tools it provides to substitute Frit 3134 for Gerstley Borate (while maintaining the oxide chemistry). A melt flow comparison of the two (bottom left) shows that the GB version has an amber coloration (from its iron) and that it flows a little more (it has already dripped off). The flow test on the upper left shows G2926A flowing beside PGF1 transparent (a tableware glaze used in industry). Its extra flow indicates that it is too fluid, it can accept some silica. This is very good news because the more silica any glaze can accept the harder, more stable and lower expansion it will be. You might be surprised how much it took, yet still melts to a crystal clear. See the article to find out.

These are two cone 6 matte glazes (shown side by side in an account at Insight-live). G1214Z is high calcium and a high silica:alumina ratio (you can find more about it by googling 1214Z). It crystallizes during cooling to make the matte effect and the degree of matteness is adjustable by trimming the silica content (but notice how much it runs). The G2928C has high MgO and it produces the classic silky matte by micro-wrinkling the surface, its matteness is adjustable by trimming the calcined kaolin. CaO is a standard oxide that is in almost all glazes, 0.4 is not high for it. But you would never normally see more than 0.3 of MgO in a cone 6 glaze (if you do it will likely be unstable). The G2928C also has 5% tin, if that was not there it would be darker than the other one because Ravenscrag Slip has a little iron. This was made by recalculating the Moore's Matte recipe to use as much Ravenscrag Slip as possible yet keep the overall chemistry the same. This glaze actually has texture like a dolomite matte at cone 10R, it is great. And it has wonderful application properties. And it does not craze, on Plainsman M370 (it even survived and 300F to ice water plunge without cracking). This looks like it could be a great liner glaze.

A cone 10R grey stoneware mug that has begun to craze on the inside. The greyer coloration around the craze lines indicates that water is soaking into the slightly porous body. This mug has lost the ring it had when it was new (it is only about a year old). It could be refired to be as good as new but would soon return to this condition. The only real solution is to reformulate this glaze to reduce its thermal expansion.

This is an example of cutlery marking in a cone 10 silky matte glaze lacking Al2O3, SiO2 and having too much MgO. Al2O3-deficient glazes often have high melt fluidity and run during firing, this freezes to a glass that lacks durability and hardness. But sufficient MgO levels can stabilize the melt and produce a glaze that appears stable but is not. Glazes need sufficient Al2O3 (and SiO2) to develop hardness and durability. Only after viewing the chemistry of this glaze did the cause for the marking become evident. This is an excellent demonstration of how imbalance in chemistry has real consequences. It is certainly possible to make a dolomite matte high temperature glaze that will not do this (G2571A is an example, it has lower MgO and higher Al2O3 and produces the same pleasant matte surface).

These glaze cones are fired at cone 6 and have the same recipe: 20 Frit 3134, 21 EP Kaolin, 27 calcium carbonate, 32 silica. The difference: The one on the left uses dolomite instead of calcium carbonate. Notice how the MgO from the dolomite completely mattes the surface whereas the CaO from the calcium carbonate produces a brilliant gloss.

I am looking for patterns in Cooper Red glaze chemistry and not finding any. I pasted some recipes I found on the net into my account at insight-live.com, then exported them as CSV, opened it in Open Office Calc, removed the unneeded rows, transposed it, fiddled with the column and row titles and combined some rows to get this. CaO varies alot, so does KNaO (I expected the latter to be high always). The Al2O3 is all over the map, so is B2O3. Even the copper sees a four-fold difference! Some have or have no ZnO, MgO and Li2O. However SiO2 is always 3.5 or lower and CaO is always above 0.45, while that is at least something of a pattern, most cone 10R glazes have this anyway. It seems that just about any transparent glaze will make a copper red.

Here is an example of how a profile having no inherent strength can warp during firing (the one on the left is just bisque fired, the one on the right is fired beyond zero porosity to achieve translucency). Two key factors contribute to this failure: This porcelain is highly vitreous. This shape is vulnerable to warping. If the lip were flared out, for example, it would have much more strength to stay round. If the porcelain was less vitreous it would warp less. Of the two factors, which contributes more to the warping for this specific piece? The shape.

Left: Worthington Clear cone 04 glaze (A) uses Gerstley Borate to supply the B2O3 and CaO. Right: A substitute using Ulexite and 12% calcium carbonate (B). The degree of melting is the same but the gassing of the calcium carbonate has disrupted the flow of B. Gerstley Borate gasses also, but does so at a stage in the firing that does not disrupt this recipe. However, as a glaze, B does not gel and produces a clearer glass. A further adjustment to source CaO from non-gassing wollastonite would likely improve it.

Worthington Clear is a popular low fire transparent glaze recipe. It has 55% Gerstley Borate plus 30% kaolin (Gerstley Borate melts at a very low temperature because it sources lots of boron). GB is also very plastic, like a clay. I have thrown a pot from this recipe! This explains why high Gerstley Borate glazes often dry so slowly and shrink and crack during drying. When recipes also contain a plastic clay the shirinkage is even worse. GB is also slightly soluble, over time it gels glaze slurries. Countless potters struggle with Gerstley Borate recipes. How could we fix this one? First, substitute all or part of the raw kaolin for calcined kaolin (using 10% less because it has zero LOI). Second: It is possible to calculate a recipe having the same chemistry but sourcing the magic melting oxide, boron, from a frit instead.

The two cone 04 glazes on the right have the same chemistry but the center one sources it's CaO from 12% calcium carbonate and ulexite (the other from Gerstley Borate). The glaze on the far left? It is almost bubble free yet it has 27% calcium carbonate. Why? It is fired to cone 6. At lower temperatures carbonates and hydrates (in body and glaze) are more likely to form gas bubbles because that is where they are decomposing (into the oxides that stay around and build the glass and the ones that are escaping as a gas). By cone 6 the bubbles have had lots of time to clear.

These cone 04 glazes both have 50% Gerstley Borate. The other 50% in the one on the left is PV Clay, a very low melting plastic feldspar. On the right, the other 50% is silica and kaolin, both very refractory materials. Yet the glaze on the right is melting far better. How is that possible? Likely because the silica and kaolin are supplying Al2O3 and SiO2, exactly the oxides that Gerstley Borate needs to form a good glass.

This is a thin slip-cast plate made from a high-silica (therefore high thermal expansion) clay and a thick layer of low thermal expansion glaze. During the cooling in the kiln the clay shrinks and the glaze shrinks less. This puts the latter under compression, and the body under tension. A ceramic does not do well under tension. A week after firing the piece spontaneously cracked to relieve the tension.

Sometimes EP Kaolin is the best suspender in a glaze, sometimes it isn't. These are the same 85% fritted glaze. A (left) employs 15% Old Hickory #5 ball clay to suspend it, B (right) has 15% EPK. B settles quickly, demands low water content or it runs like water, it goes on very thick even if dipped quickly, it dries instantly and creates uneven thicknesses. By contrast, A goes on like silk, doesn't settle, dries evenly in about 10 seconds. What a difference! All simply because of using a different clay to suspend it.

These mugs are in the leather-hard stage. They have just been trimmed. The clay has dried firm enough to handle them without pushing them out of shape too much, but not so much that it is difficult to tool and flute the foot ring.

An Insight-live page displaying four cone 6 matte recipes. It has been exported to a CSV file which I have opened in my spreadsheet software. I then reorganized it to compare these 4 glazes and relate the chemistry to the melt flow tests.

An example of how a spoon can cutlery mark a glaze. This is a popular middle temperature recipe used by potters. The mechanism of its matteness is a high percentage of zinc oxide that creates a well-melted glaze that fosters the growth of a mesh of surface micro-crystals. However these crystals create tiny angular protrusions that abrade metal, leaving a mark. Notice the other matte flow on the left (G2934), it not only has a better surface (more silky feel) but also melts much less (its mechanism is high MgO in a boron fluxed base). It is does not cutlery mark at all!

A melt fluidity comparison between two cone 6 matte glazes. G2934 is an MgO saturated boron fluxed glaze that melts to the right degree, forms a good glass, has a low thermal expansion, resists leaching and does not cutlery mark. G2000 is a much-trafficked cone 6 recipe, it is fluxed by zinc to produce a surface mesh of micro-crystals that not only mattes but also opacifies the glaze. But it forms a poor glass, runs too much, cutlery marks badly, stains easily, crazes and is likely not food safe! The G2934 recipe is google-searchable and a good demonstration of how the high-MgO matte mechanism (from talc) creates a silky surface at cone 6 oxidation the same as it does at cone 10 reduction (from dolomite). However it does need a tin or zircon addition to be white.

Left: a cone 6 matte glaze (G2934 with no colorant). Middle: 5% Mason 6006 chrome-tin red stain added. Right: 5% Mason 6021 encapsulated red stain added. Why is there absolutely no color in the center glaze? This host recipe does not have the needed chemistry to develop the #6006 chrome-tin color (it lacks sufficient CaO and has alot of MgO). Yet this same matte glaze intensifies the #6021 encapsulated stain at only 5% (using 20% or more encapsulated stain is to develop the color is not unusual).

These are Mason stains added to the cone 6 G2934 silky MgO matte liner base glaze (with tin, zircopax and various stains added). The brightest colors (6600, 6350, 6300, 6021, 6404) were tested overnight in lemon juice without visible changes. It is known that MgO mattes are less prone to acid attack that CaO mattes. Caution is required with inclusion stains (like #6021), if they are rated to cone 8 they may already begin bubbling at cone 6 is some host glazes.

A quick and organized method of testing many different stains in a base glaze: Prepare your work area like this. Measure the water content of the base glaze as a percent (weight, dry it, weight it again: %=wet-dry/wet*100). Apply labels to the jars (bottom) showing the host glaze name, stain number and percentage added. Counterbalance a jar on the scale, fill it to the desired depth, note the amount of glaze and calculate the weight of dry powder that is present in the jar (from the above %). For each jar (bottom) multiply the percent of stain needed by the dry glaze weight / 100. Then weigh that and add to the jar and put the lid back on. Let them sit for a while, then shake and mix each (I use an Oster kitchen mixer). Then dip the samples, write the needed info on them and fire.

G2934 cone 6 matte (left) with 10% zircopax (center), 4% tin oxide (right). Although the cutlery marks clean off all of them, clearly the zircopax version has the worst problem and is the most difficult to clean. To make the best possible quality white it is wise to line blend in a glossy glaze to create a compromise between the most matteness possible yet a surface that does not mark or stain.

Left: G2934 cone 6 matte glaze with 3% Mason 6300 blue stain. Right: An additional 4% tin added. Notice how an opacified color does not have depth and therefore is lighter in color. Also it does not break to different shades at the edges of contours the way the transparent color does.

An example of how a micro-bubble population in the matrix of a transparent glaze can partially opacify it. If this glaze was completely transparent, the red clay body would show much better. However this is not the fault of the glaze. On a white body it would be more transparent. The problem is the terra cotta body. This is fired at cone 02. As the body approaches vitrification the decomposition of particles within it generate gases that bubble up in to the glaze. A positive aspect of this phenomena that this glaze could be opacified using a lower percentage of zircon. This type of glaze responds better to opacifier additions.

We are looking at two pairs of samples, they demonstrate why knowing about glaze chemistry can be so important. Both pairs are the same glazes: G2934 cone 6 matte and G2916F cone 6 glossy. The left pair has 5% maroon stain added, the right pair 5% purple stain. The red and purple develop correctly in the glossy but not the matte. Why? The Mason Colorworks reference guide has the same precaution for both stains: the host glaze must be zincless and have 6.7-8.4% CaO (this is a little unclear, it is actually expressing a minimum, the more the CaO the better). The left-most samples of each pair here have 11% CaO, the right-most have 9%. So there is enough CaO. The problem is MgO (it is the mechanism of the matteness in the left two), it impedes the development of both colors. When you talk to tech support at any stain company, as I did with Mason on this, they need to know the chemistry of your glaze to help, not the recipe.

These are Mason stains added to cone 6 G2916F clear liner base glaze. Notice that all of these stains develop the correct colors with this base (except for manganese alumina pink 6020). However caution is required with inclusion stains (like #6021), if they are rated to cone 8 they may already begin bubbling at cone 6 is some host glazes.

These are the oversize particles (from the 79, 100, 140 and 200 mesh sieves) from 100 grams of a commercial Gleason ball clay. They have been fired to cone 8 oxidation. There is 1.5 grams total, this is within the limits stated on their data sheet even though the material is sold as 200 mesh grade. Firing the samples shows whether the particles contain iron that will produce specking in porcelains and whiteware. In this case there are a few. We do this test on many materials and this is typical of what we see.

These are Mason stains added to cone 6 G2926B clear liner base glaze. Notice that the chrome tin maroon 6006 does not develop as well as the G2916F glossy base recipe. The 6020 manganese alumina pink is also not developing. Caution is required with inclusion stains (like #6021), if they are rated to cone 8 they may already begin bubbling at cone 6 is some host glazes.

The outside glaze on this cone 10R mug (made of Plainsman H550) is simply an Alberta Slip:Ravenscrag Slip 50:50 mix with 5% added Ferro Frit 3134 (the Alberta Slip is calcined). This produces a stunning celadon with great working and application properties. Inside glaze: Ravenscrag Slip 90%, talc 10% (a matte having an extra ordinary silky texture). Learn more at ravenscrag.com.

This is G2571A cone 10R dolomite matte glaze with added 1% cobalt oxide, 0.2% chrome oxide. The porcelain is Plainsman P700, the inside glaze is a Ravenscrag Slip clear. This recipe can be googled, it has been available for many years and was first formulated by Tony Hansen. This base is very resistant to crazing on most bodies and it does not cutlery mark or stain. It also has very good application properties.

This is 100% Alberta Slip (outside) on a white stoneware clay fired to cone 10R. The glaze is made using a blend of 60% calcine and 40% raw (as instructed at the albertaslip.com support website). Alberta Slip was originally formulated during the 1980s (using Insight software) as a chemical duplicate of Albany Slip. The inside: A Ravenscrag Slip based silky matte.

All of these Mason stains make the porcelain more refractory, but some more so (e.g. 6385, 6226). Some do not develop the intended color (e.g. 6006 pink). Some need a higher concentration (e.g. 6121, 6385). Some need a lower concentration (e.g. 6134). Some do not impart a homogeneous color (e.g. 6385).

Copper red glazes require tight control of the reduction firing. The mug on the left is grey and brown by the foot, the other has developed no color at all on some parts. These were fired to cone 10R with reduction starting at cone 010 and going all the way up. There was no clearing or soaking period at the end of the firing. This is the Red Celadon recipe.

Opacifying a cone 10 reduction magnesia matte glaze. On the left: G2571A dolomite matte, a popular recipe (from Tony Hansen). Right: 10% Zircopax has been added. Both are on a buff stoneware (H550 from Plainsman Clays).

This is an example of how soluble salts can enhance the appearance of the fired surface of a cone 10R clay. This sculpture body is a vitreous dark brown burning base having lighter colored 20 mesh grog particles. The one on the left uses native stoneware clays that contain natural flux-containing solubles that migrate to the surface during drying. When fired they act like an extremely thin layer of glaze, producing a darker sheen on the surface. The thickness (and thus color) varies with contour and exposure of the surface during drying. The inside of the cone has no solubles at all.

The raw Plainsman M2 clay stockpile before it is ground. This is mined in Montana and imparts red color to various middle and low temperature clay bodies. It is a remarkably consistent material.

The natural Plainsman St. Rose Red clay before it is ground. This has about 6% iron oxide and is used to color high temperature throwing and sculpture bodies. It is quite refractory, very unusual for a clay this high in iron. It is from St. Rose, Manitoba.

These mugs are made from a vitreous cone 10R sculpture clay (Plainsman Native Sculpture). The grog is the lighter colored specks against the background of a quite vitreous dark burning and smooth clay. This body thus has quite a bit more fired strength than the average much more porous sculpture body.

Pure grog (brick aggregate) is made by crushing bricks to produce a particulate material that is added to sculpture clay bodies to reduce their drying shrinkage (to reduce drying cracks) and impart texture. Brick manufacturers always have a certain percentage of reject and actually grind the reject bricks and clay together. These are structural high temperature stoneware bricks in a stockpile at Plainsman Clays.

A closeup of 35-48 mesh grog particles (courtesy of Plainsman Clays). Grogs are added to clay bodies to impart better drying properties. Grog particles perform their drying-shrinkage-reducing function (for plastic bodies) best when they have an angular rather than round shape.

These particles are from a grog that has been milled and separated into its constituent sizes in the lab. As you can see it has a wide range of particle sizes, from 48 to finer than 200 mesh. When fired ceramic (like bricks) is ground the finer sizes often predominate. Because the coarser grades have a lower yield they can be much more expensive and harder to get. But they are the most effective in reducing the drying shrinkage and fired stability of structural and sculptural bodies.

This is a quality but expensive material!

The red underglaze on this low-fired bowl is not properly fluxed (melted), it does not adhere to the body (this is a commerial product). The bottom-most contour of this bowl is convex and the transparent overglaze, which is under some compression, has popped right off! This is a serious hazard on the inside of functional ware. Each stain has it own melting temperature, and the underglaze formulation using that stain must employ a mix that supplies sufficient fluxes. So test your underglazes (by firing without an overglaze), even if they are a commercial product.

Even commercial dinnerware can suffer cutlery marking problems. This is a glossy glaze, yet has a severe case of this issue. Why? Likely the zircon opacifier grains are protruding from the surface and abrading metal that comes into contact with it.

These are fired bars of Barnard Slip going from cone 04 (bottom) to cone 6 (top). It is melting at cone 6. Porosity is under 3% and the fired shrinkage above 15% from cone 1 upward. Drying shrinkage is 4% at 25% water (it is very non-plastic). The darkness of the fired color suggests higher MnO than our published chemistry shows.

Example of a severely dunted cone 6 stoneware tile. This problem was deliberately created by stacking several tiles on top of this one. This set up a temperature gradient across it so that different parts passed through quartz inversion at different times.

Screen a glaze to break down the wollastonite agglomerates (which often form in storage). This is an 80 mesh plastic sieve (the actual screen is a metal insert inside), I am using a spatula to encourage it to pass through the screen. If you do not do this, the small lumps you see on the freshly glazed piece will fire to surface bumps and ruin the glaze.

Slips and engobes are fool-proof, right? Just mix the recipe you found on the internet, or that someone else recommends, and you are good to go. Wrong! Low fire slips need to be compatible with the body in two principle ways: drying and firing. Terra cotta bodies have low shrinkage at cone 06-04 (but high at cone 02). The percentage of frit in the engobe determines its firing shrinkage at each of those temperatures. Too much and the engobe is stretched on, too little and it is under compression. The lower the frit the less the glass-bonding with the body and the more chance of flaking if they do fit well (either during the firing or after the customer stresses your product). The engobe also needs to shrink with the body during drying. How can you measure compatibility? Bi-body strips. First I prepare a plastic sample of the engobe. Then I roll 4 mm thick slabs of it and the body, lay them face-to-face and roll that down to 4 mm again. I cut 2.5x12 cm bars and dry and fire them. The curling indicates misfit. This engobe needs more plastic clay (so it dry-shrinks more) and less frit (to shrink less on firing).

Here is the oversize (from Plainsman MSculp) on the four coarsest screens we use to do particle size distributions on clay bodies. There are very few intermediate sizes between the very fine particles of the base body and the coarse particles of the grog and sand. Contrary to what I have thought up until now, lately we have found that this approach makes for greater plasticity, better drying and less water splitting than if the grog and body contain a range of coarse to very fine particles. It also feels smooth on the wheel.

This is part of a project to fit a fritted vitreous engobe (slip) onto a terra cotta at cone 02 (it fires harder there). Left: On drying the red body curls the bi-clay strip toward itself, but on firing it goes the other way! Right: Test bars of the white slip and red body compare their drying and firing shrinkages. Center back: A mug with the white slip and a transparent overglaze. Notice the slip is going translucent under the glaze. Why? It is too vitreous. That explains how it can curl the bi-clay bars toward itself (it has a higher fired shrinkage). So rather than add zircon to opacify the slip, it is better to reduce its frit content (thereby reducing its firing shrinkage). Reducing the frit in the slip will also make it more opaque (because it will melt less). Front: A different, more vitreous red body (having a frit addition) fits the slip better (the strips dry and fire straight).

These bi-body strips are made by rolling two clays together in a thin sandwich. Three porcelains are being compared to a very plastic grogged sculpture body. After drying (top) they curl a little, two toward the sculpture body and one, the most plastic of the porcelains, toward the white. But on firing to cone 8 they curl dramatically toward the porcelain side (because it shrinks alot more). Now imagine one of these porcelains is being used as a slip on this body.

An example of a highly fluid glaze melt that has pooled in the bottom of a bowl. The fluidity is partly a product of high KNaO, thus it is also crazed (because KNaO has a very high thermal expansion). While it may to decorative, this effect comes at a cost. The crazing weakens the piece, much more than you might think (200%+). Those cracks in that thick layer at the bottom are deep, they want to continue down into the body and will do so at the first opportunity (e.g. sudden temperature change, bump). Also, fluid glazes like these are more likely to leach.

A example of a highly fluid cone 6 glaze that has pooled in the bottom of a mug (and crystallized). It has caused a crack all the way around that has separated the base. Glazes normally need to be under some compression to avoid crazing (by having a lower-than-the-body thermal expansion), but if they are thick like this the body does not have the strength to resist the extra outward pressure the glaze can be exerting. Conversely, if the glaze is under tension (having too high an expansion), the cracks that develop within it to relieve the tension are deep and wider and thus more likely to propagate into the body below.

A very fine particled low fire red burning terra cotta clay (Plainsman Redearth) fired at cone 2,3 and 4 (top to bottom). Notice the cone 4 bar is beginning the melting process (signaled by the fact that it is expanding). Yet it is not bloating as this type of raw clay normally would. The cone 2 and three bars have reached zero porosity also. Other clays that fire to very similar color begin to bloat long before they reach zero porosity.

A bag of magnesium carbonate beside a bag of feldspar. Although the former weighs 25 kg (vs. 22.7 kg for the feldspar), clearly it is a dramatically lighter (per volume unit) material. Lifting that bag of Mag Carb feels like lifting a pillow!

The engobe on the left, even though it has a fairly low water content, is running off the leather hard clay, dripping and drying slowly. The one on the right has been flocculated with epsom salts, giving it thixotropy (ability to gel when not in motion but flow when in motion). Now there are no drips, there are no thin or thick sections. It gels after a few seconds and can be uprighted and set on the shelf for drying.

This is a stainless steel spoon that has been dipped into a ceramic engobe that has been flocculated using epsom salts. Without the salts the slip completely runs off leaving only a film. But with the right amount it stays on the spoon in an even layer (as a gel), then hardens as it dewaters (left) and finally dries completely (right) with no cracks! It fired to cone 03 with no cracks. If this were fired high enough it would transform to a glaze. But it would craze. Special low expansion frits are available to make enamels for metals.

It is easy to find pictures of spalling bricks at google. This happens because water trapped in the pores of ceramic and concrete expands during freezing and breaks it down. This should be a concern to people making architectural and sculpture pieces for outdoors. How do you know if your ceramic will spall? It needs open and closed pore space if over 1% closed porosity. Measure the percentage gain in weight (of a test tile) after a 24-hour water soak, that is 'open porosity'. Then boil for 5 hours and it will soak up more water, measure that as the % closed porosity. The second number needs to be 20% greater than the first. Why? The closed space provides a place for expansion as the water is freezing.

This demonstrates the difficulty you can encounter when trying to get an engobe working with a clay body. Here the slip/glaze is flaking off the rim of pieces at cone 04 (does not happen at 06). The front bi-clay bar demonstrates the white and red clays dry well together (the slight curve happened on the drying). They also fire well together (the curvature did not change on firing). The back two thin bars seem to demonstrate thermal expansion compatibility: a thick layer of glaze is not under enough compression to curve either bar during firing. While the white clay contains 15% frit and forms a good bond with the red body, that bond is not nearly as good as the one between the glaze and the white slip. Yet it is still flaking off the rim at the slip/body interface. Why? At first it seemed that failure was happening at quartz inversion (because the body had less quartz than the white slip). However now it appears that the combination of compressions of the slip and glaze are sufficient to break the slip-body bond on convex contours. The compression of the slip and glaze likely did not demonstrate well on the bars because at this low a temperature they are not vitreous enough to be easily curled.

These were fired to cone 03 (upper) and 04 (lower). At cone 03 the loss in weight is 4.54%, at 04 it is 4.45%. That is 0.08% difference. If a mug weighs 250 grams, that is only 0.21 grams. Does not sound like much. But wait. Air weighs 0.001225g/cc. While this is not the exact weight of the gases escaping during firing it suggests that around 170cc of gases need to bubble up through the glaze if the piece was bisque fired at cone 04 and glaze fired to cone 03.

A Ford Cup being using to measure the viscosity of a casting clip. These are available at paint supply stores. It drains water in 10 seconds. This casting slip has a specific gravity of 1.79 and we target a 40-second drain. Maintenance of viscosity and specific gravity are vital to an efficient process in slip casting.

This deflocculated slurry of 1.79 specific gravity (only 28% water) has just been poured into a mold. The mold is dry, the wall thickness of the bowl will build quickly and the liquid level will sink only slightly. The mold can be drained in minutes (for a wall thickness of 3-4 mm). The clay is not too plastic (too fine particle sized) so it is permeable enough to enable efficient water migration to the plastic face. If the specific gravity of this slip was too low (too high a percentage of water) the liquid level would sink drastically during the time in the mold, take longer to build up a wall thickness and water-log the mold quickly. If the slip contained too much deflocculant it would cast slower, settle out, form a skiln and drain poorly. If it had too little deflocculant it would gel in the mold and be difficult to pour out.

This is 568cc of water and 1400 grams of Polar Ice porcelain casting clay. Amazingly enough it is possible to get all that powder into that little bit of water and still have a very fluid slurry for casting. The volume will increase to only 1065cc. How is this possible? That water has 13 grams of Darvan 7 deflocculant in it, it causes the clay particles to repel each other such that you can make a liquid with only little more water than is in a throwing clay! All it takes is 15 minutes under a good power propeller mixer (in a bigger container of course).

16,000 layers of clay, but still not mixed! Soft and stiff slabs were interlayered, then the piece repeatedly cut in half and slammed downward to re-flatten (doubling the number of layers each time). Yet it is still not mixed! 30 seconds of wedging is all it takes to finish the job, wedging is a very effective mixing technique.

This is the easiest way to measure the specific gravity of a glaze if it is not in a container deep enough to float a hydrometer (or if it is too thick to float it properly). Just fill to the 100cc mark and the scale reads the specific gravity. Be careful on cheap plastic graduated cylinders like this, check them with water and correct the true 100cc mark if needed (using a felt pen). You could actually use any tall narrow container you have (if you mark the 100cc level).



Matte glazes have a fragile mechanism. That means the same recipe will be more matte for some people, more glossy for others (due to material, process and firing differences). In addition, certain colors will matte the base more and others will gloss it more. It is therefore critical for matte glaze recipes to have adjustability (a way to change the degree of gloss), both for circumstances and colors. This recipe is Plainsman G2934 base matte with 6% Mason 6600 black stain added. It has been formulated to be on the more matte side of the scale so that for most people a simple addition of G2926B (M370 transparent ultra clear base recipe) will increase the gloss. That means users need to be prepared to adjust each color of the matte to fine-tune its degree of gloss. Here you can see 5:95, 10:90, 15:85 and 20:80 blends of the matte:gloss recipe bases.

These 10 gram balls were fired and melted down onto a tile. The one the left is the original G2934 Plainsman Cone 6 MgO matte with 6% stain. On the right the adjustment has a 20% glossy glaze addition to make it a little less matte. Notice the increased flow (the ball has flattened more) with the addition of the glossy. In addition, while the percentage of stain is actually less (on the right), the color appears darker! Tuning the degree of matteness when making color additions to a base is almost always necessary to achieve a glaze that does not cutlery mark.

Here is a screenshot of side-by-side recipes in my account at insight-live.com. It takes 120 mag carb to source the same amount of MgO as 50 mag ox. I just made the two recipes, went into calculation mode and kept bumping up the magcarb by 5 until the chemistry was the same. Note the LOI of the magcarb version is 40. This one would certainly crawl very badly.

Example of a buff stoneware clay bloating at cone 10 oxidation (whereas it appears very stable at cone 8).

The machine has been reassembled after cleaning and is ready for startup. This pugmill is powerful and capable of injecting alot of energy into the material. Premixed powder and water are fed into the main mixing chamber by a screw conveyor at the far end. Dozens of blades on the rotating shaft inside cut and mix the material so that by the time it has reached half way in the main chamber all traces of powder are gone. At the end of the main chamber an auger delivers the materials to a venturi terminated by a shredder. This slices the material with dozens of tiny blades as it enters the vacuum chamber (yellow cover). This exposes as much surface as possible to the vacuum. Additional blades on the main shaft further mix the material and finally an auger compresses it and delivers it to the nose where a column is extruded for cutting to length and packaging.

The goblet on the left is bending, not just because the clay is somewhat unstable at the temperature being fired, but because this shape is also inherently unstable. Where extreme shapes are prone to warping, ware must be made from clays that do not vitrify (that introduces issues of strength and functionality). In this case, the clay recipe is based on a terra cotta material that matures at a very low temperature. The problem was dealt with by employing a recipe of 60:40 clay:200# kyanite.

I used a binder to form 10 gram balls and fired them at cone 08 (1700F). Frits melt really well, they do not gas and they have chemistries we cannot get from raw materials (similar ones to these are sold by other manufacturers). These contain boron (B2O3), it is magic, a low expansion super-melter. Frit 3124 (glossy) and 3195 (silky matte) are balanced-chemistry bases (just add 10-15% kaolin for a cone 04 glaze, or more silica+kaolin to go higher). Consider Frit 3110 a man-made low-Al2O3 super feldspar. Its high-sodium makes it high thermal expansion. It works in bodies and is great to incorporate into glazes that shiver. The high-MgO Frit 3249 has a very-low expansion, it is great for crazing glazes. Frit 3134 is similar to 3124 but without Al2O3. Use it where the glaze does not need more Al2O3 (e.g. it already has enough clay). It is no accident that these are used by potters in North America, they complement each other well. The Gerstley Borate is a natural source of boron (with issues frits do not have).

Example of a glaze (G1916J) shivering on the rim of a mug. But the situation is not as it might appear. This is a low quartz cone 03 vitreous red body having a lower-than-typical thermal expansion. The white slip (or engobe) has a moderate amount of quartz and is thus put under some compression by the body. But the compression is not enough to shiver off (e.g. at the rim) when by itself. However the covering glaze has an even lower expansion exerting added compression on the slip. This causes a failure at the slip-body interface.

The flocculated slip (left) hangs on, stays even and does not run. The normal slip (right) is thin and running on verticals and thinning at the rim.

Pure MinSpar feldspar fired at cone 6 on Plainsman M370 porcelain. Although it is melting, the crazing is extreme! And expected. Feldspars contain a high percentage of K2O and Na2O (KNaO), these two oxides have the highest thermal expansion of any other oxide. Thus, glazes high in feldspar (e.g. 50%) are likely to craze. Using a little glaze chemistry, it is often possible to substitute some of the KNaO for another fluxing oxide having a lower thermal expansion.

This chart compares the gassing behavior of 6 materials (5 of which are very common in ceramic glazes) as they are fired from 500-1700F. It is a reminder that some late gassers overlap early melters. The LOI (loss on ignition) of these materials can affect your glazes (e.g. bubbles, blisters, pinholes, crawling). Notice that talc is not finished until after 1650F (many glazes have already begin melting by then).

Feldspar and talc are both flux sources (glaze melters). But the fluxes (Na2O and MgO) within these materials need the right mix of other oxides with which to interact to vitrify or melt a mix. The feldspar does source other oxides for the Na2O to interact with, but lacks other fluxes and the proportions are not right, it is only beginning to soften at cone 6. The soda frit is already very active at cone 06! As high as cone 6, talc (the best source of MgO) shows no signs of melting activity at all. But a high MgO frit is melting beautifully at cone 06. While the frits are melting primarily because of the boron content, the Na2O and MgO have become active participants in the melting of a low temperature glass. In addition, the oxides exist in a glass matrix that is much easier to melt than the crystal matrix of the raw materials.

These two boron frits (Ferro 3124 left, 3134 right) have almost the same chemistry. But there is one difference: The one on the right has no Al2O3, the one on the left has 10%. Alumina plays an important role (as an oxide that builds the glass) in stiffening the melt, giving it body and lowering its thermal expansion, you can see that in the way these flow when melting at 1800F. The frit on the right is invaluable where the glaze needs clay to suspend it (because the clay can supply the Al2O3). The frit on the left is better when the glaze already has plenty of clay, so it supplies the Al2O3. Of course, you need to be able to do the chemistry to figure out how to substitute these for each other because it involves changing the silica and kaolin amounts in the recipe also.

These are glazed test bars of two fritted white clay bodies fired at cone 03. The difference: The one on the right contains 13% 200 mesh quartz, the one on the left substitutes that for 13% 200 mesh calcined alumina. Quartz has the highest thermal expansion of any traditional ceramic material, alumina has the lowest. As a result the alumina body does not "squeeze" the glaze (put it under some compression). The result is crazing. There is one other big difference: The silica body has 3% porosity at cone 03, the alumina one has 10%!

These balls were fired at 1550F and were the same size to start. The Gerstley Borate has suddenly shrunk dramatically in the last 40 degrees (and will melt down flat within the next 50). The talc is still refractory, the Ferro Frit 3124 slowly softens across a wide temperature range. The frit and Gerstley Borate are always fluxes, the talc is a flux under certain circumstances.

Some material data sheets show both the oxide and mineralogical analyses. Dolomite, for example, is composed of calcium carbonate and magnesium carbonate minerals, these can be separated mechanically. Although this material participates in the glaze melt to source the MgO and CaO (which are oxides), it's mineralogy (the calcium and magnesium carbonates) specifically accounts for the unique way it decomposes and melts.

The white slip (applied to a leather hard cup) on the left is dripping downward from the rim (even though it was held upside down for a couple of minutes!). Yet that slurry was viscous with a 1.48 specific gravity, on mixer-off the motion stopped immediately. Why? Because it was not thixotropic (it did not gel). The fix? I watered it down to 1.46 (making it very thin and runny) and did a cycle of adding a pinch of epsom salts (about 0.5 gm) and mixing vigorously watching for it to thicken enough to stop motion in about 1 second on mixer shut-off (bounce backward!). It is extremely difficult not to overdo the epsom salts (gelling it too much) so I keep ungelled slurry aside and pour some back in to dilute to overgelled batch. That works perfect to fine-tune the degree of thixotropy so it gels after about 10-15 seconds of sitting. So to apply it I stir it, wait a couple of seconds and dip the mug. By the time I pull it out it is ready to gel and hold in place.

Here is a good reason not to have single-temperature-tunnel-vision when evaluating or using a clay body or clay material. This high-iron clay looks great at cone 3 or 4 (the bottom bar is cone 5 and out-of-place). But by cone 5 the solubles (invisible at lower temperatures) begin to melt. Shortly after it rapidly descends into serious bloating and then melting by cone 8.

A slaking clay (a typlical potters clay). On the left the clay bar has been in the water for around 10 seconds. On the right, after a couple minutes, the rate of slaking has increased dramatically. Within about 5 minutes this bar will disappear into a pile on the bottom. Slaking happens most quickly when the sample is completely dry and the clay has low plasticity. Very high plasticity clays can take hours to slake. Slaking can be reduced and even eliminated by the addition of a hardener (like Xantham gum).

The mugs on the left are made from a moderate plasticity stoneware clay. On the right: A highly plastic porcelainous whiteware type body. On the left, there is not the slightest hint of a crack anywhere. Right: 3 s-cracks on the bases, 2 handles have separated completely at the bottom and all have small cracks at the join. It is little wonder that stonewares are preferred by potters, they produce much fewer rejects.

Iron oxide is an amazing glaze addition in reduction. It produces celadons at low percentages, then progresses to a clear amber glass by 5%, then to an opaque brown at 7%, a tenmoku by 9% and finally metallic crystalline with increasingly large crystals past 13%. These samples were cooled naturally in a large reduction kiln, the crystallization mechanism would be much heavier if it were cooled more slowly.

There is a direct relationship between the way ceramic glazes fire and their chemistry. Wrapping your mind around that and overcome your aversion to chemistry is a key to getting control of your glazes. You can fix problems like crazing, blistering, pinholing, settling, gelling, clouding, leaching, crawling, marking, scratching, powdering. Substitute frits or incorporate better, cheaper materials, replace no-longer-available ones (all while maintaining the same chemistry). Adjust melting temperature, gloss, surface character, color. Identify weaknesses in glazes to avoid problems. Create and optimize base glazes to work with difficult colors or stains and for special effects dependent on opacification, crystallization or variegation. Create glazes from scratch and use your own native materials in the highest possible percentage.

The original bag of this product in 2014.

Three cone 6 commercial bottled glazes have been layered. The mug was filled with lemon juice over night. The white areas on the blue and rust areas on the brown have leached! Why? Glazes need high melt fluidity to produce reactive surfaces like this. While such are normally subject to leaching, the manufacturers were able to tune the chemistry of each to make them resistant. But the overlaps mingle well (because of the fluidity), they are new chemistries, less stable ones. What is leaching? Cobalt! Not good. What else? We do not know, these recipes are secret. It is much better to make your own transparent or white liner glaze. Not only can you pour-apply it and get very even coverage, but you know the recipe, have control, can adjust to fit your body.

Pure soda feldspar (Minspar 200) fired like-a-glaze at cone 4, 5, 6 and 7 on porcelainous stoneware samples. The bottom samples are balls that have melted down at cone 7 and 8. Notice there is no melting at all at cone 4. Also, serious crazing is highlighted on the cone 6 sample (it is also happening at cone 5 and 7).

A variety of terra cotta clay test bars (and a low temperature porcelain) that have been fired to cone 5. The measurement and weight data from these bars is entered into the appropriate recipes in my account at Insight-live.com; it uses that data to calculate shrinkage and porosities. I will also attach link this picture to each of the recipes. Some are quite vitreous and stoneware-like, some are in the advanced stages of melting, others could take more heat yet.

These are high temperature stoneware mugs that have been bisque fired, glazed and then bisque fired again to cone 02. This is done so they can be handled without damage (they are being shipped to another location for firing to cone 10R). The glaze is quite durable at this point and would be difficult to damage.

Keeping your valuable notes like this? Recipes? Test results? Are your pictures lost in a cellphone with no keywords or connections to anything? If you test and develop you need to organize in a way that a book cannot do. Like link recipes to each other and other things like pictures and firing schedules. You need to group test recipes in projects, classify them. Calculate chemistry and mix tickets. Research materials. Do keyword searches. Book and binder records do not do this. Your account at Insight-live.com does!

Left: Ravenscrag G2928C matte on inside of mug. Right: A clear glossy. The matte needs to be soaked in the kiln long enough to make sure it develops a functional surface, especially on the bottom. Mattes are not always the best choice for food surfaces, but you can do it if you blend in enough glossy glaze to make it smooth enough not to cutlery mark.

This is L3724E terra cotta stoneware. The inside slip is L3685S, a frit-fluxed engobe that is hard like the body and attaches well to it (engobes are often insufficiently fluxed). The glaze (G1916Q) is Frit 3195, Frit 3110 and 15% ball clay. The body has about 3% porosity, enough to make very strong pots. However that porosity is still enough to absorb water (and coffee). Although not too visible here, the pinhole in the inner surface has enabled absorption and there is a quarter-sized area of discoloration below the glaze. The piece could possibly be fired a cone higher, but testing would be required to see if the slip is still firing-shrinkage and thermal-expansion compatible with the body and that the body would not be over-fired. A better solution is adjust the firing curve to heal the glaze better. High temperature stoneware can easily have a 3% porosity also, so this is not just a low fire issue.

An example of a white engobe (L3685T) applied over a red clay body (L3724F), then a red engobe (also L3724F) applied over the white. The incised design reveals the white inter-layer. This is a tricky procedure, you have to make sure the two slips are well fitted to the body (and each other), having a compatible drying shrinkage, firing shrinkage, thermal expansion and quartz inversion behavior. This is much more complex that for glazes, they have no firing shrinkage and drying shrinkage only needs to be low enough for bisque application. Glazes also do not have quartz inversion issues.

Left: Cone 10R buff stoneware with a silky transparent Ravenscrag glaze. Right: Cone 6 Polar Ice translucent porcelain with G2916F transparent glaze. What do these two have in common? Much effort was put into building these two base glazes (to which colors, variegators, opacifiers can be added) so that they fire to a durable, non-marking surface and have good working properties during production. They also fit, each of these mugs survives a boil:ice water thermal shock test without crazing. And the clays? These are vitreous and strong. So these pieces will survive many years of use.

Fight the glaze dragon! Test. Document. Learn. Repeat. Replace that paper notebook or binder with an account at Insight-live.com. Fix, adjust, formulate your own glaze on your PC using desktop Insight software.

Fight the glaze dragon. Disorganized documentation of your testing? You are playing into his hands. Replace that notebook or binder with pictures, recipes, firing schedules, test results, material and more in your own or a group account at insight-live.com.

There are thousands of ceramic glaze recipes floating around the internet. People dream of finding that perfect one, but they often only think about the visual appearance, not of the usability, function, safety, cost or materials. That resistance to understanding your materials and glazes and learning to take control is what we personify as the dragon. Using the resources on this site you could be fixing, adjusting, testing, formulating your own glaze recipes. Start with your own account at insight-live.com.

Left: G1916Q transparent fired at cone 03 over a black engobe (L3685T plus stain) and a kaolin-based low fire stoneware (L3685T). The micro-bubbles are proliferating when the glaze is too thick. Right: A commercial low fire transparent (two coats lower and 3 coats upper). A crystal clear glaze result is needed and it appears that the body is generating gases that cause this problem. Likely the kaolin is the guilty material, the recipe contains almost 50%. Kaolin has a 12% LOI. To cut this LOI it will be necessary to replace some or all of the kaolin with a low carbon ball clay. This will mean a loss in whiteness. Another solution would be diluting the kaolin with feldspar and adding more bentonite to make up for lost plasticity.

This is an example of how useful a flow tester can be to check new glaze recipes before putting them on ware and into your kiln. This was fired to only cone 4, yet that fritted glaze on the left is completely over-melted. The other one is not doing anything at all. These balls are easy to make, you only need weigh out a 50 gram batch of glaze, screen it, then pour it on a plaster bat until it is dewatered enough to be plastic enough to roll these 10 gram balls.

This is Ravenscrag Slip, I am going to calcine about 10 pounds of it in this bisque ware vessel to destroy the plasticity. I will fire to 1000F and hold it for 2 hours to make sure the heat penetrates. Why calcine? Because I have found that in some glazes having 70% or more Ravenscrag Slip, cracking on drying can occur if it is applied too thick. I love the working properties of these glazes and want to optimize them to avoid any problems. I am going to mix 75:25 raw:calcine on the next batch of glaze. However, Ravenscrag has an LOI of 9%, so I need to use 9% less of the calcine powder (just multiply the amount by 0.91). Suppose, I needed 1000 grams: I would use 750 raw and 250*.91=227.5.

The powder was simply put into it and fired. Sintering is just beginning.



Three mugs. Dry. Bisque fired. Glaze fired. Notice the shrinkage at each stage (these were the same size in the dry state).

Tony's lab work area of mineral and chemical powders for mixing test glazes and clay bodies. Stoneware and earthenware glazes are made from dozens (even hundreds) of commodity industrial mineral powders.



Cone 6 to 10 oxidation (top to bottom) fired shrinkage and porosity testing bars.

These three cups are glazed with G1916S at cone 03. The glaze is the most crystal clear achieved so far because it contains almost no gas producing materials (not even raw kaolin). It contains Ferro frits 3195 and 3110 plus 11 calcined kaolin and 3 VeeGum. Left is a low fire stoneware (L3685T), center is Plainsman L212 and right a vitreous terra cotta (L3724F). It is almost crystal clear, it has few bubbles compared to the kaolin-suspended version. These all survived a 300F/icewater test without crazing!

The side of this white porcelain test mug is glazed with varying thicknesses of VC71 (a popular silky matte), then fired to cone 6. Out of the kiln there was no crazing, and it felt silky and wonderful. But a 300F/icewater test was done and then it was felt-pen marked and cleaned with acetone. This is what happened! This level of crazing is bad, the dense pattern indicates a very poor fit. Then why was it not crazed coming out of the kiln? The glaze is apparently elastic enough to handle the gradual cooling in the kiln. But what the kiln did not do, time certainly will. This recipe has 40% feldspar (a big high-expansion KNaO contributor), that much in a cone 6 glaze it a red flag to crazing. Coupled with that was low Al2O3 and SiO2, another tip-off.

Left: This specimen of VC71 cone 6 matte glaze was felt-marked and cleaned with acetone. A closeup of the ink specks reveals they are held in micro-bubbles breaking at the surface. This specimen has also been thermally stressed in a 300F/icewater test (causing the crazing pattern, which curiously, only shows up on part of the surface). Right: An adjustment to VC71 that adds more boron and Al2O3/SiO2 (while preserving the Si:Al ratio). It is much glossier, confirming that, even though the VC71 matte surface feels functional to the touch, it is a product of improper melting.

Fired at 1850. Notice that Frit 3195 is melting earlier. By 1950F, they appear much more similar. Melting earlier can be a disadvantage, it means that gases still escaping as materials in the body and glaze decompose get trapped in the glass matrix. But if the glaze melts later, these have more time to burn away. Glazes that have a lower B2O3 content will melt later, frit 3195 has 23% while Frit 3124 only has 14%).

The top glaze is VC71, a popular matte cone 6 glaze used by potters. Bottom is G2934 matte, a public domain recipe produced by Plainsman Clays. The latter is a high-MgO matte, it melts well and does not cutlery mark or stain easily. As evidence that it is a true matte, notice that it is still matte when fired to cone 7 or 8. VC71, while having a similar pleasant silky matte surface at cone 6, converts to a glossy if fired higher. This suggests that the cone 6 matteness is due to incomplete melting. For the same reason, it is whiter in color (as soon as it begins to melt and have depth the color darkens).

Two transparent glazes applied thickly and fired to cone 03 on a terra cotta body. Right: A commercial bottled clear, I had to paint it on in layers. Left: G1916S almost-zero-raw-clay glaze, a mix of Ferro frit 3195, 3110, calcined kaolin and a small amount of VeeGum T. The bubbles you see on the left are from the gas generated by the body. The ones on the right are from body and glaze. How can so many more bubbles be generated within a glaze? Raw kaolin. Kaolin loses 12% of its weight on firing, that turns to gas. Low temperature glazes melt early, while gassing may still be happening. So to get a crystal clear the raw clay content has to be as low as possible. Obviously, a white burning body made from refined materials would be even better. A good compromise: A red slip (or engobe) over a white burning body, it would generate far less gases because of being much thinner and still exhibit the nice red color.

This is Plainsman Raku. It has 18% 35-65 mesh grog, 65% Plainsman A3 buff stoneware clay, 14% Pyrax and 3% bentonite.

Commercial underglaze colors fired at cone 8 in a flow tester (this is another good example of how valuable flow testers are). Underglazes need to melt enough to bond with the underlying body, but not so much that edges of designs bleed excessively into the overlying glaze. A regular glaze would melt enough to run well down the runway on this tester, but an underglaze should flow much less. The green one here is clearly not sufficiently developed. The black is too melted (and contains volatiles that are gasing). The pink is much further along than the blue. And cone 5, these samples all melt significantly less. Clearly, underglazes need to be targeted to melt at specific temperatures and each color needs specific formulation attention. Silk screening and inkjet printing are increasingly popular and these processes need ink that will fuse to the surface of the body.

Alberta Slip cone 6 lithium brown (GA6-G1) on a red burning clay (left Plainsman M390) and buff burning (right M340). Obviously this looks better on the former where iron from the underlying body variegates the entire surface and bleeds through on contours where the glaze is thinner, creating a breaking effect.

These Plainsman Midstone and Redstone cups are fired to cone 6 with M340 Transparent glaze liner (these are raw materials that body manufacturers incorporate into their products in fairly high percentages). Notice how many more glaze bubbles there are with the red cup. This is typical using other transparent glazes also. To get a bubble-free clear on this red burning body a glaze having a higher melt fluidity is needed.

These are two 10-gram balls (formed by dewatering the glaze on plaster) of low temperature glazes (G1916J, G1916Q) containing only frit and kaolin fired to 1250F. The carbon is part of the LOI of the kaolin (that hardens and suspends the glaze). Yet these glazes have much lower carbon content than ones made from raw materials.

GA6-A Alberta Slip base glaze (80 Alberta Slip:20 Frit 3134) fired with Plainsman slow cool cone 6 firing schedule on Plainsman M390 iron red clay. If this is cooled at normal speed, it fires to a glossy clear amber glass with no crystals.

A batch of fired test bars that have just been boiled and weighed, from these we get dry shrinkage, fired shrinkage and porosity. Each pile is a different mix, fired to various temperatures. Test runs are on the left, production runs on the right. Each bar is stamped with an ID and specimen number (the different specimens are the different temperatures) and the measurements have all be entered into our group account at insight-live.com. Now I have to take each pile and assess the results to make decisions on what to do next (documenting these in insight-live).

This is 8.4L of water (in the bottom of that pail) and a 20kg bag of Polar Ice porcelain casting clay. Amazingly enough it is possible to get all that powder into that little bit of water and still have a very fluid slurry for casting. The volume will increase to only 2/3 of this 5 gallon pail. How is this possible? That water has 100 grams of Darvan 7 deflocculant in it, it causes the clay particles to repel each other such that you can make a liquid with only little more water than is in a throwing clay! All it takes is 15 minutes under a good power propeller mixer.

These mugs are quite thin walled. A glaze has just been applied to the inside. Notice how it has water logged the bisque (you can see the contrast at the base, where the clay is a little thicker and has not changed color yet). Although there may be enough absorbency that a glaze could be applied now, it would still not be a good idea because it would completely waterlog the piece and result in a very long drying time. This is bad, not only because of process logistics, but also because slow drying glazes almost always crack and lift from the bisque (causing crawling).

The glaze on the left is called Tenmoku Cone 6 (a popular, and old, CM recipe). It is 20% calcium carbonate, 35% Custer feldspar, 15% OM4 Ball Clay and 30% silica, 10% iron oxide. If you have any experience with glaze you will note two things that a fishy here: There is no boron, lithia or zinc sourcing material. How can this melt enough at cone 6? It looks melted, but the ease of scratching it shows it is not. So, it appears that if we saturate an incompletely melted glaze with a lot of refractory brown colorant on a dark body the effect can be black. A better idea is the glaze on the right. We start with a stable, reliable base transparent, G2926B. Then we add 5% Mason 6666 black stain (stains are smelted at high temperatures, quenched and ground, they are inert and relatively safe). A bonus is we end up with a slurry that is not nearly as messy to use and does not turn into a bucket of jelly.

A porcelain mug has pulled slightly oval because of the weight of the handle. This happens in highly vitrified porcelains (e.g. translucent ones). The amount of feldspar or frit in the body determines the degree of maturity, the correct percentage is a balance between enough to get the maximum translucency and hardness but not so much that ware is deforming excessively during firing. This is Plainsman Polar Ice at cone 6, this degree of warp is acceptable and can be compensated for.

Silk screening is a popular decorating method. It is difficult to get a better quality screen than having an aluminum framed one made at a shop that specializes in this process (you can buy those hinges from a screen supplier). This screen is 16x20 inches and I have multiple designs on it (I made them in Adobe Illustrator). I am about to screen lettering and a logo onto a tile using an ink I made (because I have found drastically different melt behaviors in commercial underglazes). I find that simply mixing the ink with water to a very thick consistency works best (it is very easy to plug up the screen if you employ hardening mediums, they are difficult to wash out).

Are you really sure the problem is with the materials? I had been using an 85% Ravenscrag, 15% frit glaze for many years with no crawling problems. But then it started crawling. I tried mixes with new materials and the old ones. Still crawled. The problem? What was I thinking? An 85% clay glaze is going to crawl so the question should have been: How did I get away with it for so long? I actually do not know! But I am now calcining Ravenscrag as appropriate (as documented at ravenscrag.com) and I love the control this gives me in balancing slurry properties with drying hardness.

All common traditional ceramic base glazes are made from only a dozen elements (plus oxygen). Materials decompose when glazes melt, sourcing these elements in oxide form. The kiln builds the glaze from these, it does not care what material sources what oxide (assuming, of course, that all materials do melt or dissolve completely into the melt to release those oxides). Each of these oxides contributes specific properties to the glass. So, you can look at a formula and make a good prediction of the properties of the fired glaze. And know what specific oxide to increase or decrease to move a property in a given direction (e.g. melting behavior, hardness, durability, thermal expansion, color, gloss, crystallization). And know about how they interact (affecting each other). This is powerful. And it is simpler than looking at glazes as recipes of hundreds of different materials (each sources multiple oxides so adjusting it affects multiple properties).

G1916Q and J low fire ultra-clear glazes (contain Ferro Frit 3195, 3110 and EPK) fired across the range of 1650 to 2000F (these were 10 gram balls that melted and flattened as they fired). Notice how they soften over a wide range, starting below cone 010 (1700F)! At the early stages carbon material is still visible (even though the glaze has lost 2% of its weight to this point), it is likely the source of the micro-bubbles that completely opacify the matrix even at 1950F (cone 04). This is an 85% fritted glaze, yet it still has carbon; think of what a raw glaze might have! Of course, these specimens test a very thick layer, so the bubbles are expected. But they still can be an issue, even in a thin glaze layer on a piece of ware. So to get the most transparent possible result it is wise to fire tests to find the point where the glaze starts to soften (in this case 1450F), then soak the kiln just below that (on the way up) to fire away as much of the carbon as possible. Of course, the glaze must have a low enough surface tension to release the bubbles, that is a separate issue.

G2934 is a popular matte for cone 6 (far left). It is not matte because it is not melting enough or is covered with micro-crystals, it is an MgO matte (a mechanism produces a more pleasant surface that cutlery marks and stains less). But what if it is too matte for you? This recipe requires accurate firings, did your kiln really go to cone 6? Proven by a firing cone? If it did, then we need plan B: Add some glossy to shine it up a bit. I fired these ten-gram balls of glaze to cone 6 on porcelain tiles, they melted down into nice buttons that display the surface well. Top row proceeding right: 10%, 20%, 30%, 40% G2926B added (100% far right). Bottom: G2916F in the same proportions. The effects are similar but the top one produces a more pebbly surface.

This is due to its inability to withstand thermal gradients across its width. Sintered alumina is refractory, but it is not thermal shock resistant. The vessel on it was being used to calcine clay. The inner part of the shelf was being protected from the rising heat because of this heavy, slow-to-rise vessel on top of it. The moment of the crack was so dramatic that, in spite of the weight on top of it, the shelf blew apart leaving 4 pieces with an inch-gap separating them.

Hard to believe, but this carbon is on ten-gram balls of low fire glazes having 85% frit. Yes, this is an extreme test because glazes are applied in thin layers, but glazes sit atop bodies much higher in carbon bearing materials. And the carbon is sticking around at temperatures much higher than it is supposed to (not yet burned away at 1500F)! The lower row is G1916J, the upper is G1916Q. These balls were fired to determine the point at which the glazes densify enough that they will not pass gases being burned from the body below (around 1450F). Our firings of these glazes now soak at 1400F (on the way up). Not surpisingly, industrial manufacturers seek low carbon content materials.

Example of the oversize particles from a 100 gram wet sieve analysis test of a powdered sample of a porcelain body made from North American refined materials. Although these materials are sold as 200 mesh, that designation does not mean that there are no particles coarser than 200 mesh. Here there are significant numbers of particles on the 100 and even 70 mesh screens. These contain some darker particles that could produce fired specks (if they are iron and not lignite); that goodness in this case they do not. Oversize particle is a fact of life in bodies made from refined materials and used by potters and hobbyists. Industrial manufacturers (e.g. tile, tableware, sanitaryware) commonly process the materials further, slurrying them and screening or ball milling; this is done to guarantee defect-free glazed surfaces.

This is a cut through an eight-month-old slug of pugged clay. The cut was done near the surface. The patchy coloration is a by-product of the aging process. If a slice of this was fired in a kiln, an even and homogeneous white surface would emerge, with no hint of what you see here. A few moments of wedging will mix the matrix and ready it for wheel throwing or hand forming.

Left: A high-contrast photo of a cut across the cross section of an eight-month-old slug of Plainsman M370 pugged clay. Right: A cut of a just-produced material (which will exhibit the same pattern in eight more months). You can feel different stiffnesses as you drag your finger across this clay, these are a product of the aging process combined with the natural lamination that a pugmill produces. Clearly, the older material needs to be wedged before use in hand building or on the wheel.

Mold has appeared on the surface of an eight-month-old slug of potters clay (Plainsman M370). It is part of the aging process and can appear on any clay, depending on the conditions of storage. On the right a thin slice of the material has been fired to cone 6, showing that these marks are not iron. Mixing these specks back into the interior of the slug can be done quickly by wedging, greatly diminishing worries about any health issues involved with them.

A video of the kind of agitation you need from a power mixer to get the best deflocculated slurry properties. This is Plainsman Polar Ice mixing in a 5 gallon pail using my mixer. Although it has a specific gravity of 1.76, it is very fluid and yet casts really well. These properties are a product of, not just the recipe, but the mixer and its ability to put energy into the slurry.

An example of a production log book that a ceramic industry worker keeps. Unfortunately, it is in his pocket, not available to lab personnel. There is room for lots of misunderstandings here. This could (should) be replaced by a group account at Insight-live.com.

Potters often store glazes for long periods so tiny spherical precipitate particles can form. These were found in a months-old bucket of G2926B (M370 clear) cone 6 clear glaze (about 2 gallons). These can appear over time, depending on factors like temperature, electrolytes in your water or solubility in the materials (likely, the frit is slightly soluble). The glaze slurry should be screened periodically (or immediately if you note the particles when glazing a piece). This is an 80 mesh screen. Note the brush, using one of these gets the glaze through the screen much quicker than using a rubber spatula.

An example of what can happen if ware is heated too fast during early stages of firing. This bowl was not quite dry on the base, it is Plainsman M370. Even though the firing proceeded to 220 degrees and soaked for an hour, it was not enough time for the water to escape before the second step in the firing schedule.

Do you need to rescreen a glaze slurry. Using a brush like this you will be able to get it through the screen much faster. This is because the rubber edge forces particles into the screen openings, plugging them. The brush is gentler, the oversize material just rolls around on top. If you are screening a glaze for the first time, however, the spatula is better if there are agglomerated particles that need to be broken up (e.g. wollastonite, cornwall stone). When rescreening, any oversize particles (e.g. precipitates) should be discarded.

On the left is a blue stain, right is a green. Obviously the blue is melting much better, even bleeding at its edges. On the other hand, the green just sits on the surface as a dry, unmelted layer. For this type of work, stains need to be mixed into a glaze-like recipe of compatible chemistry (a melt medium) to create a good, paintable color. The blue is powerful, it would only need to comprise 5-10% of the recipe total. Its medium would need to have a stiffer melt (so the cobalt fluxes it to the desired degree of melt fluidity). The percentage of the green stain would need to be higher (10%-15% or more). It's medium would need to be fluid (over melted), the stain would then stiffen it up to give desired melt fluidity. Of course, only repeated testing would get them just right. The guidelines of the stain manufacturer for chemistry compatibility would need to be consulted also (as certain stains will not develop their color unless the medium they are in has a compatible chemistry). And, to be as paintable as possible, use 1 part of gum solution to each 2 parts of water to create the slurry.

Pinholing is often related to the smoothness of the underlying body surface. The lower half of this vase was tooled during the leather hard stage, all the pinholes occur there. Even though this glaze contains 10% grog, the pinholes are not appearing on the upper half because the slip generated during throwing has left a smooth surface.

Overfired Polar Ice porcelain. This bowl fired with an oval-shaped rim and was sticking to the shelf.

This is Polar Ice cone 6 porcelain that has been over fired. The electric kiln was set to do its standard cone 6 fast fire schedule, but a cone in the kiln demonstrates that it fired much higher (perhaps to cone 7 judging by the bend on the cone). This is a translucent frit-fluxed porcelain that demands accurate firing, the over fire has produced tiny bubbles and surface dimples in the glaze. The mug rim has also warped to oval shape. The lesson: If you are firing ware that is sensitive to schedule or temperature, use large cones and adjust if needed. If it fires too hot like this, then program to fire to cone 5 with a longer soak, or cone 5.5 (if possible). Or, program all the steps yourself; that is definitely our preference.

Pinholing on the inside of a cone 6 whiteware bowl. This is glaze G2926B. The cause is likely a combination of thick glaze layer and gas-producing particles in the body. Bodies containing ball clays and bentonites often have particles in the +150 and even +100 mesh sizes. The presence of such particles is often sporadic, thus it is possible to produce defect-free ware for a time. But at some point problems will be encountered. Companies in production either have to filter press or wet process these bodies to remove the particles. Or, they need to switch to more expensive bodies containing only kaolins and highly processed plasticizers.

An extreme example of blistering in a piece fired at cone 03. The glaze is Ferro Frits 3195 and 3110 with 15% ball clay applied to a bisque piece. Is LOI the issue? No, this glaze has a low LOI. Low bisque? No, it was bisqued at cone 04. Thick glaze layer? Yes, partly. Holding the firing longer at temperature? No, I could hold this all night and the glaze would just percolate the whole time. Slow cooling? Close, but not quite. The secret I found to fix this was to apply the glaze in a thinner layer and drop-and-hold the temperature for 30 minutes at 100F below cone 03. Doing that increased the viscosity of the glaze melt to the point that it could break the blisters (held by surface tension) while still being fluid enough to smooth out the surface.

Laguna Barnard Slip substitute fired at cone 03 with a Ferro Frit 3195 clear glaze. The very high bubble content is likely because they are adding manganese dioxide to match the MnO in the chemistry of Barnard (it gases alot during firing).

An example of a cone 10 porcelain that is over mature. It contains too much feldspar and is vitrifying so much that it is beginning to melt. The weight of the handle is pulling the lip into a oval shape, even though the hourglass shape of the piece should offer stability.

An example of a decal that has been fired at 1500F onto a matte cone 6 glaze. Notice the glossy, square around the graphic. This is where the decal paper was cut prior to transfer. This glossy layer appears by design, the decal paper has a thin layer of glaze and your inkjet design is printed, reverse reading, onto that. After transfer and firing that glaze thus insulates the color from coming into contact with anything that might leach it. It is thus wise to trim carefully around designs such that the glossy pattern does not detract from the appearance (as it does here).

Crawling of a cone 10R Ravenscrag iron crystal glaze. The added iron oxide flocculates the slurry raising the water content, increasing the drying shrinkage. To solve this problem you can calcine part of the Ravenscrag Slip, that reduces the shrinkage. Ravenscrag.com has information on how to do this.

This is a cone 04 clay (Plainsman Buffstone) with a transparent glaze (G1916Q which is 65% Frit 3195, 20% Frit 3110, 15% EPK). On coming out of the kiln, the glaze looked fine, crystal clear, no crazing. However when heated to 300F and then immersed into ice water this happens! At lower temperatures, where bodies are porous, water immediately penetrates the cracks and begins to waterlog the body below. Fixing the problem was easy: Substitute the low expansion Frit 3249 for the Frit 3110.

The pattern was painted using wax resist and the glaze applied by pouring.

This dry glaze is shrinking too much, it is going to crawl during firing. This common issue happens because there is too much plastic clay in the glaze recipe (common with slip glazes). Clay is needed to suspend the other particles (they would quickly settle to the bottom of the bucket without it), but too much causes excessive shrinkage. Fixing this problem is not nearly as difficult as most people think. You can reduce shrinkage by calcining part of the clay or swapping a clay component for another of similar chemistry but lower shrinkage. The best way: Use glaze chemistry to source some Al2O3 (contributed by the clay) from feldspar instead. Of course this involves juggling amounts of other materials in the recipe to maintain the overall chemistry.

Because they dry and stiffen much faster. When the handles are glued on with slip about an hour later they are about the same stiffness as the mugs. The handled mugs, which are sitting on plaster batts, will then be covered with cloth and plastic over night. The next morning, the bases will have stiffened and all sections of the mugs will be about the same stiffness, ready for trimming. After that they will be decorated, then placed on smooth wooden batts and wrapped with a cloth for drying.

SHAB test bars, an LDW water content sample and a DFAC drying disk about to be put into a drier. The SHAB (shrinkage-absorption) bars shrink during drying and firing, the length is measured at each stage. The LDW sample is weighed wet, dry and fired. The can prevents the inner portion of the DFAC disk from drying and this sets up stresses that cause it to crack. The nature of the cracking pattern and its magnitude are recorded as a Drying Factor. The numbers from all of these measurements are recorded in my account at Insight-live. It can present a complete physical properties report that calculates things like drying shrinkage, firing shrinkage, water content and LOI from these measured values.

These particles contaminating particles are exposed on the rim of a bisque fired mug. The liqnite ones have burned away but the iron particle is still there (and will produce a speck in the glaze). Remnants of the lignite remain inside the matrix and can pinhole glazes. Since ball clays are air floated (a stream of air takes away the lighter particles and the heavier ones recycle for regrinding) it seems that contamination like this would be impossible. But the equipment requires vigilance for correct operation, especially when there is pressure to maximize production. Ores in Tennessee are higher in coal than those in Kentucky. North American clay body manufacturers who confront ball clay suppliers with this contamination find that ceramic applications have become a very small part of the total ball clay market, complaints are not taken with the same seriousness as in the past.

Typical porcelains are made using clay (for workability), feldspar (for fired maturity) and silica (for structural integrity and glaze fit). These cone 6 test bars demonstrate the fired color difference between using kaolin (top) and ball clay (bottom). The top one employs #6 Tile super plastic kaolin, but even with this it still needs a 3% bentonite addition for plasticity. The bottom one uses Old Hickory #5 and M23, these are very clean ball clays but still nowhere near the whiteness of kaolins. Plus, 1% bentonite was still needed to get adequate plasticity for throwing. Which is better? For workability and drying, the bottom one is much better. For fired appearance, the top one.

These cone 6 porcelain mugs have glossy liner glazes and matte outers: VC71 (left) crazes, G2934 does not (it is highlighted using a felt marker and solvent). Crazing, while appropriate on non-functional ware, is unsanitary and severely weakens the ware (up to 300%). If your ware develops this your customers will bring it back for replacement. What will you do? The thermal expansion of VC71 is alot higher. It is a product of the chemistry (in this case, high sodium and low alumina). No change in firing will fix this, the body and glaze are not expansion compatible. Period. The fix: Change bodies and start all over. Use another glaze. Or, adjust this recipe to reduce its thermal expansion.

Plainsman H443. By Tony Hansen. The silky matte yet functional surface of this type of glaze, combined with the iron speckle from the body bleeding through it, has been a key reason why many have sought the cone 10R temperature range for pottery.

The inside glaze is pure Ravenscrag Slip and the outside glaze is a 50:50 mix of Ravenscrag and Alberta Slips. Each of the glazes employs an appropriate mix of calcined and raw clay to achieve a balance of good slurry properties, hardening and minimal drying shrinkage. Ravenscrag needs less calcined since it is less plastic than Alberta Slip.

This Cone 10 matte mug has been refired to attach decals. During the refire the Quartz-containing body passed up through quartz and cristobalite inversions while the glaze did not (all of its quartz was converted to silicates during the previous glaze firing). The sudden expansion in these two zones stretched the glaze and cracked it. Had that glaze been better fitted (under some compression) it would have been able to survive.

These cone 6 porcelain mugs are hybrid. A commercial glaze inside (Amaco PC-30) and my liner glaze the inside (G2926B, which is googleable). When commercial glazes fit a clay (without crazing) it is by accident. But when you make your own glazes, you can tune them to fit your clay. The inside needs to be food safe and craze free, so I need to know what is in it. Want to start fixing and fitting your glazes? Open an account at Insight-live.com, enter the recipes and upload good pictures and then contact me (I will give you suggestions).

These are 10 gram balls of four different common cone 6 clear glazes fired to 1800F (bisque temperature). How dense are they? I measured the porosity (by weighing, soaking, weighing again): G2934 cone 6 matte - 21%. G2926B cone 6 glossy - 0%. G2916F cone 6 glossy - 8%. G1215U cone 6 low expansion glossy - 2%. The implications: G2926B is already sealing the surface at 1800F. If the gases of decomposing organics in the body have not been fully expelled, how are they going to get through it? Pressure will build and as soon as the glaze is fluid enough, they will enter it en masse. Or, they will concentrate at discontinuities and defects in the surface and create pinholes and blisters. Clearly, ware needs to be bisque fired higher than 1800F.

The heat lamp dries the out edge in minutes (this photo makes it appear hotter than it really is). The center section of the disk is protected by the glazed bowl and takes an hour or more to dry. This sets up stresses that cause the disk to crack. The nature and size of the cracks enable establishing a drying factor value for the clay.

These cone 6 clear-glazed porcelains demonstrate just how white you can make a porcelain if you use white burning kaolins and bentonites instead of ball clays. Both contain about 40% clay. The one on the left employs New Zealand kaolin and Veegum plasticizer, the one on the right Kentucky ball clays (among the whitest of ball clays in North America) and standard bentonite. Both are zero porosity. The glaze surface is a little more flawless on the right one (possibly because ball clays have a lower LOI than kaolins).

This is not actually bad, it is good. Stain companies make adjustments when they receive shipment of off-standard raw colorants, this insulates the end user from fired variations in color. In this case, they added extra chrome (to the one on the left), the final product produces the same colored black glaze.

The cone 6 porcelain on the left uses Grolleg kaolin, the right uses Tile #6 kaolin. The Grolleg body needs 5-10% less feldspar to vitrify it to zero porosity. It thus contains more kaolin, yet it fires significantly whiter. Theoretically this seems simple. Tile #6 contains alot more iron than Grolleg. Wrong! According to the data sheets, Grolleg has the more iron of the two. Why does it always fire whiter? I actually do not know. But the point is, do not rely totally on numbers on data sheets, do the testing yourself.

The top fired bar is a translucent porcelain (made from kaolin, silica and feldspar). It has zero porosity and is very hard and strong at room temperature because fibrous mullite crystals have developed around the quartz and kaolinite grains and feldspar silicate glass has flowed within to cement the matrix together securely (that what vitrified means). But it has a high fired shrinkage, very poor thermal shock resistance and little stability at above red-heat temperatures. The bar below is zirconium silicate plus 3% binder, all that cements it together is sintered bonds between closely packed particles. Yet it is surprisingly strong, it cannot be scratched with metal. It has low fired shrinkage, zero thermal expansion and maintain its strength and hardness to very high temperatures.

I mixed a cone 6 porcelain body and a cone 6 clear glaze 50:50 and added 10% Mason 6666 black stain. The material was plastic enough to slurry, dewater and wedge like a clay, so I dried a slab and broke it up into small pieces. I then melted them at cone 6 in a zircopax crucible (I make these by mixing alumina or zircopax with veegum and throwing them on the wheel). Because this black material does not completely melt it is easy to break the crucible away from it. As you can see no zircon sticks to the black. I then break this up with a special flat metal crusher we made, size them on sieves and add them to glazes for artificial speckle. As it turned out, this mix produced specks that fused too much, so a lower percentage of glaze is needed. I can thus fine tune the recipe and particle size to theoretically duplicate the appearance of reduction speckle.

I control the recipe and temperature I use to make it and now I need to control the particle size. I have already smashed it up (using a special flat hammer we have) and am now sizing it. That involves getting what I can through the screen and then going at the larger sized particles with a hammer again. I use three screen sizes in the procedure so that I can control the distribution of sizes in the fired product (to more closely match reduction fired ware). This can be a dusty procedure and those particles are angular and sharp and high in heavy metal, so it would be better to do this outside in a breeze or with a ventilator and mask inside.

These clear glazed porcelain mugs are fired at cone 6. The one on the right has 0.2% Mason 6336 stain added to to G2926B base glaze.

It would craze glazes! This is fired at cone 6 and the crazing was like this out of the kiln. This is about as bad as I have ever seen. One might think that there is adequate quartz in this high of a percentage of ball clay to at least minimize crazing, but no so. This demonstrates the need for adequate pure silica powder in stoneware bodies to give them high enough thermal expansion to squeeze glaze on cooling to prevent crazing like this. This is also not proving to be quite as refractory as I thought, it looks like it will have about 3% porosity at cone 10.

The specific gravity of a glaze slurry is simply its weight compared to water. Different glazes optimize to different specific gravities, but 1.4 to 1.5 is typical (highly fritted glaze are higher). To measure, counter-weigh a plastic measuring cup on your scale and fill it with 500 grams of water and note how high the water fills it (hopefully to the 500cc mark!). Fill the container with your glaze to the same place. Divide its weight by the number of ccs (in this case, 500) and you have the specific gravity. The more you weigh the more accurate is the test.

Cone 6 mugs made from Plainsman M350 (left) and M390 dark burning cone 6 bodies. The outside glaze is Alberta-Slip-based GA6-C rutile blue and the inside is GA6-A base (20% frit 3134 and 80% Alberta Slip). That inside glaze is normally glossy, but crystallizes to a stunning silky matte when fired using the schedule needed for the rutile blue (cool 100F and soak, slow cool to 1400F).

These two samples demonstrate how different the LOI can be between different clays. The top one is mainly Redart (with a little bentonite and frit), it loses only 4% of its weight when fired to cone 02. The bottom one is New Zealand kaolin, it loses 14% when fired to the same temperature! The top one is vitrified, the bottom one will not vitrify for another 15 cones.

This slug is about 6 months old. It contains 0.75% gum. The gum also destroys the workability of the clay.

This is severe crazing (at cone 10R). It is happening because of the chemistry of the glaze, not the firing. The first option to check when fixing crazing is: Can the glaze accept an addition of SiO2? This glaze is an excellent candidate for that because the melt is highly fluid, it will surely be able to dissolve extra SiO2. But it could also accept Al2O3 because it is highly glossy (a little extra Al2O3 will not matte it and would also reduce expansion and increase fired hardness and durability). What to do then? I would start with a 10% addition of a mix of two parts silica to one part kaolin (this mix has a 10:1 SiO2:Al2O3 ratio, about the same as most glossy glazes).

Left: Plainsman M340 fired to cone 6 where it achieves about 1.5% porosity, good density and strength. Right: H550, a Plainsman body intended to mature at cone 10, but fired to cone 6 using the same glaze. Although the glaze melts well and the mug appears OK, it is not. It is porous and weak. In fact, it has cracked during use (the crack runs diagonally down from the rim). It was then dipped into water for a few moments and immediately the water penetrated the crack and began to soak into the body (you can see it spreading out from the crack). If this glaze were to craze the entire thing would be waterlogged in minutes.

The cone 6 glaze is well developed, it is not crazed. But the clay underneath is not developed, not vitreous. This crack happened when the mug was bumped (because of poor strength). It is barely visible. When the mug is filled with water, this happens. How fast? This picture was taken about 5 seconds later. If this was crazing, and this piece was in actual use, the clay would gradually become completely water logged. Then one day someone would put it in the microwave! Boom.

Only 3% Veegum will plasticize Zircopax (zirconium silicate) enough that you can form anything you want. It is even more responsive to plasticizers than calcined alumina is and it dries very dense and shrinkage is quite low. Zircon is very refractory (has a very high melting temperature) and has low thermal expansion, so it is useful for making many things (the low thermal expansion however does not necessarily mean it can withstand thermal shock well). Of course you will have to have a kiln capable of much higher temperatures than are typical for pottery or porcelain to sinter it well.

The two clay bars were fired side-by-side at cone 01. The back bar is of a raw clay dug from a creek bed in Alberta, Canada. Notice how it puffs up inside and eventually splits open the outer layer (which has sealed in the gases of decomposition). The front bar is that same clay, but mixed 50:50 mix with Redart. It is stable and strong as a stoneware. You can see all the lab tests I did on this in my insight-live account at http://goo.gl/KiUoU0

The lid of my firing kiln seems to be just the right environment for even drying, even of freshly thrown pieces. By the time this mug really got under way here the kiln was at 1000F and the lid was getting pretty hot. The bottom was the warmest and the top coolest, the exact opposite of how drying normally becomes uneven (the top drying first). This principle could be employed to make a heated drying chamber. The interior space could be kept at high humidity and a draft of air through it could remove humid air and the needed rate.

The mug on the left was bisque fired and then glazed, the one on the right was glazed in the green (dry) state. The glazes are the same inside and out but the porcelain one the right is based on New Zealand kaolin (vs. American kaolin on the left). Three secrets for success for the one on the right were: It was glazed inside and out in two operations with a drying phase between, it was heated to about 150F before each application and it was fired with a soaking period (at about 1900F) on the way up to top temperature (cone 6).

The mug on the right was bisque fired and then glazed, the one on the left was glazed in the green (dry) state using our standard meet-two-colors-at-the-rim glazing method. This method lends itself well to single fire glazing. Notice the glaze did not go on as thick on the once-fired piece (extra attention is needed to make sure it gets on thick enough without cracking the piece). In addition, there are a few pinholes whereas the bisqued piece is flawless. Single firing ware requires extra attention to firing, climbing to a point just before the glaze begins to melt and soaking there to enable hydrates and carbon to escape.

This bisque mug has been glazed on the inside. But the bisque has absorbed water from that glaze and this thin walled mug is now water logged as a result (except at the thicker base). It does not have the absorbency needed to build up a thick enough layer of glaze on the outside. Even if it did, the water from the two glazes would wet the bisque so much that its drying time would be greatly extended. This is a problem because the mechanism of attachment of glaze to body is fragile and works best when the glazes dries quickly (if drying is too slow bubbling and cracking can result).

An example of the importance of allowing a bisque piece to dry before glazing the outside face. This hand-built caserole lid is thin and was glazed on the inside first. That wetted the bisque enough that when the outside was poured there was not enough absorbency remaining to build a sufficient thickness on some of the areas of thinner cross section. The problem is exacerbated by the fact that the underlying red body is darkening the color of the thinner glazed sections.

I am getting closer to reduction speckle in oxidation. I make my own speckle by mixing the body and a glossy glaze 50:50 and adding 10% black stain. Then I slurry it, dry it, fire it in a crucible I make from alumina, crush it by hand and screen it. I am using G2934 cone 6 magnesia matte as the glaze on this mug on the left. To it I added 0.5% minus 20 mesh speck. Right is a cone 10R dolomite matte mug. Next I am going to screen out the smallest specks, switch to a matte glaze when making the specks (they are too shiny here), switch to dark brown stain. Later we will see if the specks need to bleed a little more. I am now pretty well certain I am going to be able to duplicate very well the reduction look in my oxidation kiln. I will publish the exactly recipe and technique as soon as I have it.

Much effort is expended at Plainsman Clays to develop good transparent base glazes. Far left is a white cone 6 porcelain made from New Zealand kaolin, a super-white-burning bentonite, feldspar and silica. P300 is a kaolin-only cone 6 whiteware. M370 is a kaolin-ball clay whiteware. The P300 and M370 recipes contain feldspar, silica and bentonite also. M340 is a buff stoneware, it is made from locally mined stoneware clays with no additions of feldspar or silica or any refined clays.

In reduction firing, where insufficient oxygen is present to oxidize the iron, natural iron pyrite particles in the clay convert to their metallic form and melt. The nature of the decorative speckled effect depends on the size of the particles, the distribution of sizes, their abundance, the color of the clay and the degree to which they melt. The characteristics of the glaze on the ware (e.g. degree of matteness, color, thickness of application, the way it interacts with the iron) also have a big effect on the appearance.

These crucibles are thrown from a mixture of 97% Zircopax (zirconium silicate) and 3% Veegum T. The consistency of the material is good for rolling and making tiles but is not quite plastic enough to throw very thin (so I would try 4% Veegum next time). It takes alot of time to dewater on a plaster bat. But, these are like nothing I could make from any other material. They are incredibly refractory (fired to cone 10 they look like bisqued porcelain), a have amazing resistance to thermal shock. I could pour molten metal into them and they will not crack. I can heat one area red hot and it will not crack. I can throw the red hot piece into water and it will not crack!

To measure particle size in a slurry or powder you need sieves. This is the most popular type used in labs. They are made from brass by a company named Tyler. The range screen sizes for testing particle size is very wide. The top screen has an opening of 56 mm (that size and smaller pieces can fall through). The bottom sieve has an opening of 0.1 mm, the wires are almost too small to see. Coarser and finer sieves are available. You can buy these on ebay for a lot less than new ones, just search for tyler sieves. Keep in mind that the finer sieves (especially 325) are fragile and easily ripped. We use a series that bottoms out at 200.

Left: A porcelain that is plasticized using only ball clays (Spinx Gleason and Old Hickory #5). Right: Only kaolin (in this case Grolleg). Kaolins are much less plastic so bentonite (e.g. 2-5%) is typically needed to get good plasticity. The color can be alot whiter using a clean kaolin, but there are down sides. Kaolins have double the LOI of ball clays, so there are more gasses that potentially need to bubble up through the glaze (ball clay porcelains can produce brilliantly glassy and clean results in transparent glazes even at fast fire, while pure kaolins can produce tiny dimples in the glaze surface if firings are not soaked long enough). Kaolins plasticized by bentonite often do not dry as well as ball clays even though the drying shrinkage is usually less. Strangely, even though ball clays are so much harder and stronger in the dry state, a porcelain made using only ball clays often still needs some bentonite. If you do not need the very whitest result, it seems that a hibrid using both is still the best general purpose, low cost answer.

M370 mug using M370 clear glaze by Victor Duffhues.

Soda Ash is soluble and is thus not useful in most ceramic glazes. However that very solubility makes it very useful to control the electrolytics of ceramic slurries.

When I fire our two small lab test kilns I always include cones (I fire a dozen temperatures). I want the firing to finish when the cone is around 5-6 oclock. To make that happen I record observations on which to base the temperature I will program for the final step the next time. Where do I record these? In the schedules I maintain in our Insight-live.com group account. I use this every day, it is very important because we need accurate firings.

The porcelain mug on the left is fired to cone 6 with G2926B clear glossy glaze. This recipe only contains 25% boron frit (0.33 molar of B2O3). Yet the mug on the right (the same clay and glaze) is only fired to cone 02 yet the glaze is already well melted! What does this mean? Industry avoids high boron glazes (they consider 0.33 high boron) because this early melting behavior means gases cannot clear before the glaze starts to melt (causing surface defects). For this reason, fast fire glazes melt much later. Yet many middle temperature reactive glazes in use by potters have double the amount of B2O3 that this glaze has!

The way in which the walls of this bisque fired kaolin cup laminate reflect the plately and uniform nature of the kaolin particles. Because they are lining up during the wedging and throwing process, the strength to resist cracks is better along the circumference than perpendicular to it. The bonds are weak enough that it is very easy to break it apart by hand (even though it is bisque fired). The worst laminations were at the bottom where wall thickness was the most variable and therefore the most drying stresses occurred. However, if this kaolin were blended with feldspar and silica, this lamination tendency would completely disappear.

Most artists and potters want some sort of visual variegation in their glazes. The mug on the right demonstrates several types. Opacity variation with thickness: The outer blue varies (breaks) to brown on the edges of contours where the glaze layer is thinner. Phase changes: The rutile blue color swirls within because of phase changes within the glass (zones of differing chemistry). Crystallization: The inside glaze is normally a clear amber transparent, but because these were slow cooling in the firing, iron in the glass has crystallized on the surface. Clay color: The mugs are made from a brown clay, the iron within it is bleeding into the blue and amplifying color change on thin sections.

Not much. These mugs were exactly the same height before a bisque firing to cone 06. The clay is a porcelain made from kaolin, feldspar and silica.

Clays of very high plasticity often stiffen during storage in the bag. This is Plainsman Polar Ice, it contains 4% VeeGum. This slug is like a brick, yet it will totally loosen up completely when wedged. If a clay is too stiff to wedge you can simply throw it on the floor a few times (turning it each time) to pre-soften it for wedging.

Here is how the pugmill operator at Plainsman Clays gauges the stiffness coming out of the pugmill. That roller is on a slant and weighted. The softer the clay the more lines show. When they are like this (5th line steady) they know the water content is around 22% for this clay, Polar Ice. For other clays it is different. Stiffness at pugging must compensate when the clay tends to stiffen or soften over time on storage. Over the years they have tried many devices to measure stiffness, but this has proven the most reliable.

Three cone 6 mugs. All have zero porosity. Why is the middle one so translucent? Three reasons. 1. It has 10% more feldspar than the one on the left and reaches zero porosity already at cone 5. 2. It employs New Zealand china clay while the one on the left contains high-TiO2 #6 Tile kaolin. But this is also true for the one on the right. The third difference is the key. 3. The center one contains 4% Veegum T plasticizer (while the other two use standard bentonite). This is surprising when I tell you one more thing: The mug on the right also contains 3% Ferro Frit 3110. That means that the frit does not have near the fluxing power of the VeeGum!

G2926B (center and right) is a clear cone 6 glaze created by simply adding 10% silica to Perkins Studio clear, a glaze that had a slight tendency delay-craze on common porcelains we use. Amazingly it tolerated that silica addition very well and continued to fire to an ultra gloss crystal clear. That change eliminated the crazing issues. The cup on the right is a typical porcelain that fits most glazes (because it has 24% silica and near-zero porosity). The center one only has 17% silica and zero porosity (that is why it is crazing this glaze). I added 5% more silica to the glaze, it took that in stride, continuing to produce an ultra smooth glossy. It is on cup on the left. But it is still crazing just as much! That silica addition only reduces the calculated expansion from 6.0 to 5.9, clearly not enough for this more severe thermal expansion mismatch. Substituting low expansion MgO for other fluxes will compromise the gloss, so clearly the solution is to use the porcelain on the right.

A bowl cast from Polar Ice porcelain and fired to cone 6. I has a thinner wall than the thrown pieces made from Polar Ice throwing, yet it is much less translucent. This appears to be because the VeeGum is much less.

Powdered samples were sent to the lab. The numbers shown on this report are in percentage-by-weight. That means, for example, that 15.21% of the weight of the dry powder of Alberta Slip is Al2O3. Insight-live knows material chemistries in this way (whereas desktop Insight needs them as formulas). Some non-oxide elements are quantified as parts-per-million (these amounts are not normally high enough to take into account for traditional ceramic purposes). The LOI column shows how much mechanically and chemically bound water are gassed off during firing of the sample. The total is not exactly 100 because of inherent error in the method and compounds not included in the report.

This is an admirable first effort by a budding artist. They used a built-in cone 6 program on an electronic controller equipped electric kiln. But it is over fired. How do we know that? To the right are fired test bars of this clay, they go from cone 4 (top) to cone 8 (bottom). The data sheet of this clay says do not fire over cone 6. Why? Notice the cone 7 bar has turned to a solid grey and started blistering and the cone 8 one is blistering much more. That cone 8 bar is the same color as the figurine (although the colors do not match on the photo). The solution: Put a large cone 6 in the kiln and program the schedule manually so you can compensate the top temperature with what the cone tells you.

Red controller on the right: A Skutt Kilnmaster. Blue controller to the left of it: An Orton Autofire. These controllers both attach to a thermocouple in the kiln so they know the temperature. Both are external to the kilns (but there is a big difference). The controllers monitor the temperature change as they turn the power on in bursts, changing the length and frequency of the bursts to control temperature rise. The KilnMaster controller is attached to the 220V power line and the kiln power line attaches to it (there are heavy duty electrical relays inside). The blue Autofire controller connects to the switching mechanism in the other kiln (built to receive it), thus no heavy duty relays are needed within it. The KilnMaster is more flexible since it can connect to any kiln, but it is also triple the price.

Left: Dry mug. Right: Glazed and fired to cone 6. This is Polar Ice porcelain from Plainsman Clays. It is very vitreous and has the highest fired shrinkage of any body they make (14-15% total). This is the highest firing shrinkage you should ever normally encounter with a pottery clay.

I enter (and tune) programs manually and document them in my account at insight-live.com. This controller can hold six, it calls them Users. Whatever program I last entered or edited is the one that runs when I press "Start". When I press the "Enter Program" button it asks which User: I key in "2" (my cone 6 test bar firing program). Then it asks how many segments: I press Enter to accept the 3 (I am editing the program). After that it asks questions about each step (rows 2, 3, 4): the Ramp "rA" (degrees F/hr), the Temperature to go to (°F) to and the Hold time in minutes (HLdx). In this program I am heating at 300F/hr to 240F and holding 60 minutes, then 400/hr to 2095 and holding zero minutes, then at 108/hr to 2195 and holding 10 minutes. The last step is to set a temperature where an alarm should start sounding (I set 9999 so it will never sound). When complete it reads "Idle". Then I press the "Start" button to begin. If I want to change it I press the "Stop" button. Those ten other buttons? Don't use them, automatic firing is not accurate. One more thing: If it is not responding to "Enter Program" press the Stop button first.

It is 5 mm thick (compared to the 17mm of the cordierite one). It weighs 650 grams (vs. 1700 grams). It will perform at any temperature that any kiln that I have will generate and far in excess of that. It is made from a plastic body having the recipe 80% Zircopax Plus, 16.5% 60-80 Molochite grog and 3.5% Veegum T. The body is plastic and easy to roll and had 4.2% drying shrinkage at 15.3% water. The shelf warped slightly during drying, so care is needed. First-firing at cone 4 yielded a firing shrinkage of 1%). Notice that cone on the shelf: It is not stuck so no kiln wash is needed! Zircopax is super refractory! It is held together by sinter bonding, so the higher the temperature you can fire to the stronger it will be.

G2922B is a cone 6 clear glaze that started as a well-known recipe "Perkins Studio Clear". We substituted Gerstley Borate with a frit (while maintaining the chemistry) and then noted that the glaze was highly fluid. Since I wanted to keep its thermal expansion as low as possible, I added 10% silica. 2926B shows that it is very well tolerated. Then I added 5% more (2926D) and 10% more (2926E which is still very glossy). That means that E represents a full 20% silica addition! SiO2 has no real downsides in any well melted glossy glaze, it hardens, stabilizes and lowers expansion.

The secret to cool and functional bodies and glazes is a lot of testing. The secret to know what to test is material and chemistry knowledge. The secret to learning from testing is documentation. The place to document is an account at insight-live.com.

Each of these eight pallets of kaolin are being sampled to screen them for oversize particles. The 50 gram samples needed can be taken without having to open the bags, they are filled through a valve at the top and it can be opened easily. Kaolins and ball clays especially are suspect and body manufacturers must be vigilant about this (each can tell you disaster stories about making product with faulty raw materials containing grit, carbon and iron particles). The samples will be washed through 70, 100 and 150 mesh screens to spot any particles that could introduce grit or fired speckle into the bodies.

I love making pottery, but I love the technical side more. I searched for all the test specimens in this load of cone 10 reduction ware first, then pushed it back in and forgot about it. For three months! I really anticipate the test results (I am developing and adjusting many of bodies and glazes at any given time). The data and pictures for them go into my account at insight-live.com, it enables me to compare the chemistry and physical properties of recipes and materials side-by-side. That teaches me which roads to abandon and which ones to pursue. My last kiln went back in for six weeks, so things are getting worse!

In this view it was possible to press a function key to pop up a window to enter test results. In that window you could specify the test and specimen and it would provide blanks for all the variables where you could enter the data. Test data already entered displayed in the purple frame and could be edited there. The test results report was also printed from here.

Dark bodies tend to have more carbon impurities and the burnout of these can generate gases that create bubbles in the glaze. Because of the dark background, the bubbles impart a muddy look. The body on the left is a finer particle size, so the lower thinner glazed section is a partial success, but the upper section is bubbling. The body on the right, although a more pleasant red color, is bubbling worse. Notice also that the warm color of the body is at least largely lost under the glaze.

The buff stoneware mug on the right was bisque fired at cone 02, the one on the left at cone 06. The cone 02 mug was immersed in the clear glaze for 1 second and allowed to dry. The other was glazed on the inside first, allowed to dry, then glazed on the outside with a 1 second dip. Of course, the cone 02 one took longer to dry. In spite of this, the glaze is thicker and more even on the one bisque fired to cone 02. How is the possible? The secret is the thixotropy of the glaze. When that is right, a one second dip will give the same thickness and evenness whether dry or bisque, 06 or 02. Why bisque fire to cone 02? To get a glazed surface free of pinholes on some stoneware clays.

Because this is Plainsman Crystal Ice, it contains 40% silica (quartz). It also does not vitrify, so as much of the quartz remains undissolved as possible. This produces a body with a much high thermal expansion so it can put more of a squeeze on the high-expansion glazes used in the crystal glazing process (it is very common for such glazes to be crazed, it is accepted as part of the process).

Desktop Insight remembers materials (in its database) as formulas and their formula weights. From this it can calculate the LOI. Materials can have alternate names so they are more likely to be found in calculating recipes. This dialog provides tools for adding, editing, deleting, importing and exporting materials.

This corresponds to the recipe window in Insight-live. This is where you added, edited, searched and deleted recipes as well as entered many different kinds of data associated with them (e.g. for mix tickets, data sheets, change history). It also did chemistry calculations. It was able to order the recipe database in many different ways, a function key brought up a browse (table) view enabling traversal of the list very quickly in the selected order. The information and even the notes could also be edited within browse view.

Foresight knew 50 oxides and had a lot of data with each of them. Properties were assigned to oxides. For example, in this screen a Surface Modifier property has been added to BaO explaining how it can be employed to produce matte surfaces. That same modifier was assigned to other oxides and materials. In the properties area it was thus possible to go to matte property and see all the different ways in which a matte could be produced.

Foresight knew over a thousand materials and each carried much more data than in desktop Insight. This is where we first accumulated the material information data that now resides at insight-live.com. Material chemistry was stored in percentage analysis in contrast to Insight which stored them as formulas. Thus Foresight has a different chemistry calculation engine.

This table view of the data was very fast and flexible way to view many records at once. Notes (3) and individual column items (2) could be edited right from this view. Searching could be done on the code number column (1). The active index (6) could be switched (using the tab key) and the order would change immediately. This was a marvelous tool and no equivalent of it is available today. Interestingly, this version is running on a DOS emulator on a Macintosh computer in the middle 90s.

Before we developed Insight-live.com, Digitalfire introduced an online program called 4Sight Server. This was an attempt to make an online workspace behave as much as possible like Foresight for DOS. But we ran into difficulty with the complexity and decided not to proceed in about 2012, starting over from scratch to produce Insight-live.com. However, this system became our own internal authoring system for the Digitalfire Reference Library and we continue to use it.

This was on the IBM-PC, it was introduced in 1982. Until then Insight was running on Tandy Model 1 and 3 computers. The program was shipped on floppy disks. I was lightning fast, recalculating the chemistry as fast as you could push the calculate key. It could handle as many recipes as you had disk space for and knew about 100 materials and their chemistry. However only one recipe could be displayed at a time. Many of our customers stuck with the old DOS version of Insight well into the 2000s, even though the Windows version had long been available.

This was the Insight jump from the old DOS version to a modern graphical user interface. Although Insight was available in Window 3.1, Windows 95 was the first version that was good enough that people left DOS behind.

It is not really that dissimilar to Insight as it is today. It packed alot of power but people of the time were not inclined to believe that it was possible to do the chemistry that easily, or even that the chemistry was worthwhile learning.

The Macintosh version used the same file formats as the Windows version right from the start. Macintosh customers however, were more likely to think that the program should think for them and more likely not to know which way to put the floppy disk in!

From the 1980s to 2000s we made this spreadsheet available. It stored materials and did the calculations in the same way that Insight did. We used it to verify that calculations were being done correctly and many customers downloaded it to learn more about the theory.

Porcelains look much more glassy and melted than you might expect when viewed close up (this is cone 6 Polar Ice from Planisman Clays). The development of the glassy phase within the body creates a very good bond with the glaze. Actually it is a bonding zone where the glaze has melted into the body enough to create a transition rather than just a point of contact. The degree to which this transition develops determines the integrity of the bond. Of course, with porcelains it is far better developed than with stonewares and terra cottas.

These bars were fired at cone 10, they were straight when dry. The back one is a cone 10 Grolleg body, the front one is a cone 6 Grolleg body. This simple test is valuable to determine susceptibility to warping in porcelains. If the pyro-plastic deformation is too much, for example, the weight of a handle will pull the round rim of a mug into an oval shape, for example.

10 grams balls of these three glazes were fired to cone 6 on porcelain tiles. Notice the difference in the degree of melt? Why? You could just say glaze 2 has more frit and feldspar. But we can dig deeper. Compare the yellow and blue numbers: Glaze 2 and 3 have much more B2O3 (boron, the key flux for cone 6 glazes) and lower SiO2 (silica, it is refractory). That is a better explanation for the much greater melting. But notice that glaze 2 and 3 have the same chemistry, but 3 is melting more? Why? Because of the mineralogy of Gerstley Borate. It yields its boron earlier in the firing, getting the melting started sooner. Notice it also stains the glaze amber, it is not as pure as the frit. Notice the calculated thermal expansion: That greater melting came at a cost, the thermal expansion is alot higher so 2 and 3 glaze will be more likely to craze than G2926B (number 1).

Boron (B2O3) is like silica, but it is also a flux. Frits and Gerstley Borate supply it to glazes. In this test, I increased the amount of boron from 0.33 to 0.40 (using the chemistry tools in my insight-live.com account). I was sure that this would make the glaze melt more and have less of a tendency to craze. But as these melt flow tests (10 gram balls melted on porcelain tiles) show, that did not happen. Why? I am guessing that to get the effect B2O3 has to be substituted, molecule for molecule for SiO2 (not just added to the glaze).

This is a cone 10 glossy glaze. It should be crystal clear and smooth. But it contains strontium carbonate, talc and calcium carbonate. They produce gases as they decompose, if that gas needs to come out at the wrong time it turns the glaze into a Swiss cheeze of micro bubbles. One solution is to use non-gassing sources of MgO, SrO and CaO. Or, better, do a study to isolate which of these three materials is the problem and it might be possible to adjust the firing to accommodate it. Or, an adjustment could be make to the chemistry of the glaze such that the melting happened later and more vigorously (rather than earlier and more slowly). The latter is actually the likely cause, this glaze contains a small amount of boron frit. Boron melts very early so the glaze is likely already fluid while gases that normally escape before other cone 10 glazes even get started melting are being trapped by this one.

This is VeeGum T, a processed Hectorite clay (similar to bentonite, extremely small particle size). I have propeller-mixed enough powder into water that it has begun to gel. How long does it take for them to begin to settle? Never. This sat for a month with no visible change! That means it is colloidal.

These are translucent porcelains, they are vitreous. The firing is to cone 10. The one on the left is a cone 6 body, and, while it survives to cone 10 it does warp. But this problem is fairly serious, making it very difficult to get a good foot ring. The other, which has only slight plucking is also a little over vitreous (having too much feldspar). While the one on the right could likely be fired with no plucking at all using kiln wash powder on the shelves, the other will likely pluck even if the shelves are coated.

The glaze is well melted, but the interfacial zone with the body is very narrow. It is basically just stuck on the surface. The body is not developing any clearly visible glassy phases as does porcelain and stoneware, so not surprisingly, its strength is much lower than vitrified clay bodies at higher temperatures. However it is possible to add a frit and glass-bond the particles at cone 02 (at much higher cost of course). Not surprisingly, glazes must be more closely tuned to match the thermal expansion of the body for lower temperatures (since they are not stuck on as well).

The new ceramics is about data! Everything here has a code number (in the form x1234) that members of our team can search in our group account at insight-live.com. We write the numbers on the bottoms of pots, plastic bags of powders/liquids/pugged, buckets, glaze balls, mix tickets, test bars, tiles, glaze samples, drying tests, flow tests, sieve analyses, LOI/water content tests, etc. Many pots have two numbers, the body and the glaze. If something is lacking a number it goes in the garbage because it teaches nothing and is therefore taking up pointless space.

The glaze is well melted, but the interfacial zone with the body is wider than terra cotta but much narrower than for porcelain. The body is developing glassy phases as does porcelain and stoneware and its color has changed from red to brown. However it is possible to add a frit and glass-bond the particles at cone 02 (at much higher cost of course). Not surprisingly, glazes must be more closely tuned to match the thermal expansion of the body for lower temperatures (since they are not stuck on as well).

This is Plainsman translucent Polar Ice firing at cone 6 with a transparent base glaze. Made by Tony Hansen in 2014.

These cone 6 mugs use an 80:20 Alberta Slip:Frit blend inside and out (the outside one has added rutile). Made around 2014. The incised wheat decoration as a dead giveaway that the mug is made by Tony. He has made this type of mug for decades and there is a good reason: continuity of testing. By making the same kind of ware each time he tests a clay, going through the same procedures he has done a thousand times, he can more easily spot differences in the way they perform.

This problem was suffered by a potter moving from Europe to Canada. In Europe she used lead based glazes and got smooth defect free surfaces. But in Canada she had to use our boron based (from Frits and Gerstley Borate) glazes and had many problems adapting to them.

The original recipe had a very low clay content, sourcing almost all of its Al2O3 from feldspar instead. Although the glaze slurry was maintained at 1.78 specific gravity (an incredibly high value) and thus would have had very low shrinkage, it did not stick and harden well enough to the ware. Why? Lack of clay content in the glaze. The fix was to source much more of the Al2O3 from kaolin instead of feldspar. The reduction in feldspar shorted the glaze on KNaO and SiO2 so these were sourced from a frit and pure silica instead (the calculations to do this were done in Insight-live.com). The change also provided opportunity to substitute some of the KNaO with lower expansion CaO. This reduced the thermal expansion and reduced crazing issues.

These cone 04 glazes have the same recipe (a version of Worthington Clear sourcing B2O3 from Ulexite instead of Gerstley borate). While the one on the left is OK, the one on the right is great! Why? It has 10% added lead bisilicate frit. Of course, I would not recommend this, I am just demonstrating how well it melts. Still, we gasp at the thought of using lead while we thrive on unstable flux-deprived, glass-deprived and alumina-deprived base stoneware glazes with additions of toxic colorants like chrome and manganese!

These melted-down-ten-gram balls of glaze demonstrate the different ways in which tiny bubbles disrupt transparent glazes. These bubbles are generated during firing as particles in the body and glaze decompose. This test is a good way to compare bubble sizes and populations, they are a product of melt viscosity and surface tension. The glaze on the top left is the clearest but has the largest bubbles, these are the type that are most likely to leave surface defects (you can see dimples). At the same time its lack of micro-bubbles will make it the most transparent in thinner layers. The one on the bottom right has so many tiny bubbles that it has turned white. Even though it is not flowing as much it will have less surface defects. The one on the top right has both large bubbles and tinier ones but no clouds of micro-bubbles.

The top samples are 10 gram balls melted down onto porcelain tiles at cone 6 (this is a high melt fluidity glaze). These balls demonstrate melt mobility and susceptibility to bubbling but also color (notice how washed out the color is for thin layers on the bottom two tiles). Both have the same chemistry but recipe 2 has been altered to improve slurry properties. Left: Original recipe with high feldspar, low clay (poor suspending) using 1.75% copper carbonate. Right: New recipe with low feldspar, higher clay (good suspending) using 1% copper oxide. The copper oxide recipe is not bubbling any less even though copper oxide does not gas. The bubbles must be coming from the kaolin.

I am comparing 6 well known cone 6 fluid melt base glazes and have found some surprising things. The top row are 10 gram balls of each melted down onto a tile to demonstrate melt fluidity and bubble populations. Second, third, fourth rows show them on porcelain, buff, brown stonewares. The first column is a typical cone 6 boron-fluxed clear. The others add strontium, lithium and zinc or super-size the boron. They have more glassy smooth surfaces, less bubbles and would should give brilliant colors and reactive visual effects. The cost? They settle, crack, dust, gel, run during firing, craze or risk leaching. In the end I will pick one or two, fix the issues and provide instructions.

The mug on the left is made from a whiteware body (Plainsman M370), the one on the right is a highly vitreous translucent one (Plainsman Polar Ice). Both have been over-fired slightly. The Polar Ice mug has stuck to the shelf somewhat, taking chips out of the base (a fault called Plucking). If the shelf had been better dusted with alumina powder or sand this may not have happened.

At cone 03 many terra cottas will fire quite dense and stoneware-like. The lip of the mug on the left is covered with a vitreous white engobe (L3685U) under the glaze (G1916Q). Red bodies are much stronger at low temperatures, but do not lend themselves well to the bright glaze colors that work so well at that range. Putting an engobe on as a base enables decoration with colored slips and a clear over glaze.

Talc is not nearly as dense as many other materials. If this was silica these pallets would be half this height.

This flake shivered off the rim of a low fire terra cotta mug. It is Fishsauce slip. It is about 2 inches long and has razor sharp edges. This is not the sort of thing you would want to be falling into your coffee or food and then eating! This flake did give evidence that it was loosening so there was little danger of me consuming it, but smaller flakes can go unnoticed. Slips (or engobes) must be drying compatible, have the same firing shrinkage, the same thermal expansion and be quartz inversion compatible with the body. It is easy to ignore all that and pretend that it works, but the bond between engobe and body is fragile at low fire and easily compromised by the above incompatibilities. Slips must be fitted to the specific body, glaze and temperature; that involves a testing program and often a little chemistry. I have documented online how to I adapted this slip to Plainsman Terrastone 2 using my account at insight-live.com.

We are comparing the degree of melt fluidity (10 gram balls melted down onto a tile) between two base clear glazes fired to cone 6 (top) and cone 1 (bottom). Left: G2926B clear boron-fluxed (0.33 molar) clear base glaze sold by Plainsman Clays. Right: G3814 zinc-fluxed (0.19 molar) clear base. Two things are clear: Zinc is a powerful flux (it only takes 5% in the recipe to yield the 0.19 molar). Zinc melts late: Notice that the boron-fluxed glaze is already flowing well at cone 1, whereas the zinc one has not even started. This is very good for fast fire because the unmelted glaze will pass more gases of decomposition from the body before it melts, producing fewer glaze defects.

These melt-flow and ball-melt tests compare 6 unconventionally fluxed glazes with a traditional cone 6 moderately boron fluxed (+soda/calcia/magnesia) base (far left Plainsman G2926B). The objective is to achieve higher melt fluidity for a more brilliant surface and for more reactive response with colorant and variegator additions (with awareness of downsides of this). Classified by most active fluxes they are: G3814 - Moderate zinc, no boron G2938 - High-soda+lithia+strontium G3808 - High boron+soda (Gerstley Borate based) G3808A - 3808 chemistry sourced from frits G3813 - Boron+zinc+lithia G3806B - Soda+zinc+strontium+boron (mixed oxide effect) This series of tests was done to choose a recipe, that while more fluid, will have a minimum of the problems associated with such (e.g. crazing, blistering, excessive running, susceptibility to leaching). As a final step the recipe will be adjusted as needed. We eventually chose G3806B and further modified it to reduce the thermal expansion.

Slurries with more clay (like engobes, slips) generally respond better to epsom salts. However the extra clay also makes them more likely to go moldy, so you may need to add a few drops of Dettol to kill the bacteria (if they are stored for any length of time). Vinegar works better for glaze surries, but only if they have sufficient specific gravity. Many people like to make an epsom salts solution and add that, but if you have a good mixer you may find it more intuitive to add the crystals and wait 30 seconds for the viscosity to respond.

Two clear glazes fired in the same slow-cool kiln on the same body with the same thickness. Why is one suffering boron blue (1916Q) and the other is not? Chemistry and material sourcing. Boron blue crystals will grow when there is plenty of boron (and other power fluxes), alumina is low, adequate silica is available and cooling is slow enough to give them time to grow. In the glaze on the left B2O3 is higher, crystal-fighting Al2O3 and MgO levels are alot lower, KNaO fluxing is alot higher, it has more SiO2 and the cooling is slow. In addition, it is sourcing B2O3 from a frit making the boron even more available for crystal formation (the glaze on the right is G2931F, it sources its boron from Ulexite).

Your ware is fairly thick. It was already vitrified in a previous firing. It now must climb and fall through quartz and cristobalite inversions during a decal firing. The firing schedule provided by the decal supplier ramps up very quickly. The result? A cracked piece.

On dark burning medium temperature stoneware bodies, clear glazes often do not look good. These bodies contain more raw clays that contain larger particles that generate gases on decomposition during firing. These often cloud up typical clear glazes with micro bubbles, marring their appearance. There are solutions. Although more fluid-melt clear glazes have risks (e.g. running, blistering) they do clear bubbles better. If applied thinly (so they do not run during firing) they can work very well in this circumstance. Of course they do darken the body color (this body, Plainsman M390, fires red without glaze). This outside glaze is G3806C.

This bag will give you a clue as to what manganese dioxide is mainly used for.

The first glaze is a control, a standard non-fluid clear with copper. The other three are the short-listed ones in my project to find a good copper blue recipe starting recipe and fix its problems (which they all have). The flow testers at the back and the melt-down-balls in front of them contain 1% copper carbonate. The glazed samples in the front row have 2% copper carbonate. L3806B, an improvement on the Panama Blue recipe, has the best color and the best compromise of flow and bubble clearing ability.

The top base glaze has just enough melt fluidity to produce a brilliant transparent (without colorant additions). However it does not have enough fluidity to pass the bubbles and heal over from the decomposition of this added copper carbonate! Why is lower glaze passing the bubbles? How can it melt better yet have 65% less boron? How can it not be crazing when the COE calculates to 7.7 (vs. 6.4)? First, it has 40% less Al2O3 and SiO2 (which normally stiffen the melt). Second, it has higher flux content that is more diversified (it adds two new ones: SrO, ZnO). That zinc is a key to why it is melting so well and why it starts melting later (enabling unimpeded gas escape until then). It also benefits from the mixed-oxide-effect, the diversity itself improves the melt. And the crazing? The ZnO obviously pushes the COE down disproportionately to its percentage.

Wrong. It is the one on the right. While the copper looks so much better in that fluid one on the left, that melt mobility comes at a cost: blisters. As a clear glaze it is no glossier than the other one, but it runs into thicker zones at the bottom and they blister. This is because the high mobility coupled with the surface tension blows bubbles as gases of decomposition travel through (in a normal cooling kiln they break low enough that mobility is insufficient to heal them). The fired glass in the one on the left is also not as hard, it will be more leachable, it will also craze more easily and be more susceptible to boron-blue devritrification. But as a green? Yes it is better.

Lead glazes have brilliant surfaces and respond very well to colorants, even when they are occur in high enough percentages to produce metallic colors. Courtesy of Cory Lund.

Fired at cone 6. A melt fluidity comparison (behind) shows the G3808A clear base is much more fluid. While G2926B is a very good crystal clear transparent by itself (and with some colorants), with 2% added copper oxide it is unable to heal all the surface defects (caused by the escaping gases as the copper decomposes). The G3808A, by itself, is too fluid (to the point it will run down off the ware onto the shelf during firing). But that fluidity is needed to develop the copper blue effect (actually, this one is a little more fluid that it needs to be). Because copper blue and green glazes need fluid bases, strategies are needed to avoid them running off the ware. That normally involves thinner application, use on more horizontal surfaces or away from the lower parts of verticals.

These are four cone 6 glazes of diverse chemistry. They have varying melt fluidities. They are soaked (half way up) in lemon juice over night. None show any evidence of surface changes. All contain 2% copper carbonate. If the copper was increased, especially to the point of going metallic or crystallizing, likely the leaching test would have different results. So, if you use copper sensibly (in moderate amounts), there is a good chance you can make a glaze that resists leaching.

Classic terra cotta bodies are not vitreous, so engobes used on them need to have similar low fired shrinkage. But when terra cottas are fired above cone 04 they start to mature and fired shrinkage increases quickly, flaking off engobes that do not have sufficient added frit (to increase their shrinkage). Even if an under-compression engobe can hang on, the extra stresses of an overglaze of lower thermal expansion can compromise the engobe:body bond. That has happened on the center mug. That engobe has less frit (10% vs. 15% for the others). The clear glaze on the left has high thermal expansion and is crazing, while the engobe:body bond can tolerate that it, is obviously not desirable.

The recipe: 50% New Zealand kaolin, 21% G200 Feldspar, 25% silica and 3% VeeGum (for cone 10R). These are the cleanest materials available. Yet it contains 0.15% iron (mainly from the 0.25% in the New Zealand kaolin, the VeeGum chemistry is not known, I am assuming it contributes zero iron). A 50 lb a box of pugged would contain about 18,000 grams of dry clay (assuming 20% water). 0.15% of 18,000 is the 27 grams of iron you see here! This mug is a typical Grolleg-based porcelain using a standard raw bentonite. A box of it contains four times as much iron. Enough to fill that cup half full!

Half of these Plaisman Polar Ice mugs cracked. But I know exactly why it happened! After throwing them I put them on a slowly rotating wheelhead in front of a fan to stiffen them enough so I could attach the handles quickly. Of course, I forgot them and they got quite stiff on the lip (while the bottom was still wet). I quickly attached the handles and then covered them with cloth and plastic and let them sit for two days to let them even out. Notwithstanding that, that early gradient sealed their destiny. The lesson: At no time in the drying process should any part of a piece be significantly ahead of another part.

This glaze has a significant amount of cobalt carbonate and during cooling the excess is precipitating out into pink crystals during cooling in the kiln. This effect is unwanted because in this case since it produces an unpleasant surface and color (the photo does not clearly show how pink it is). This problem can be fixed by a combination of cooling the kiln faster, increasing the Al2O3 content in the glaze (it stiffens the melt and prevents crystal growth) or firing lower.

Here it is fired to cone 8 where the melt obviously has much more fluidity! The photo does not do justice to the variegation and crystallization happening on this surface. Of course it is running alot more, so caution will be needed.

This is G2571A cone 10R dolomite matte on an ironware body made from native North Carolina clays. Few glazes have the pleasant silky feel that this has yet are still functional. The feldspar content in the body has been tuned to establish a compromise between the warmer color low percentages have with the higher strength that higher percentages impart. Careful porosity tests were done and recorded in an account at insight-live.com. The objective was to bring the body close to 3% absorption.

This terra cotta cup is glazed with G2931G clear glaze (Ulexite based) and fired at cone 03. It survives 25 seconds under direct flame against the sidewall before a crack occurs. Typical porcelains and stonewares would survive 10 seconds. Super vitreous porcelains 5 seconds. This is a key advantage of earthenware. Sudden changes in temperature cause localized thermal expansion, this produces tension and compression that easily cracks most ceramics. But the porous nature of earthenware absorbs it much better. During initial testing I found better performance for glazed earthenware (vs. unglazed), but in later testing they proved to be fairly similar.

L3685X white slip (left mug) has 5% more frit than Y (right). The frit is a melter, creating more glass bonds to adhere it to the body (it also hardens it and darkens the color a little). But the frit also increases firing shrinkage, 'stretching' the white layer on the body as the kiln cools (the slightly curled bi-clay bar demonstrates that). However the glaze, G2931G, is under some compression (to prevent crazing), it is therefore 'pushing back' on the white slip. This creates a state of equilibrium. The Y slip on the right is outside the equilibrium, it flakes off at the rim because the bond is not good enough. Adding more frit, the other side of the balance, would put the slip under excessive tension, reducing ware strength and increasing failure on exposure to thermal shock (the very curled bi-clay bar in the front, not this clay/slip demonstrates the tension a poorly fitted slip could impose).

These are the same glaze, same thickness, Ulexite-based G2931B glaze, fired to cone 03 on a terra cotta body. The one on the right was fired from 1850F to 1950F at 100F/hr, then soaked 15 minutes and shut off. The problem is surface tension. Like soapy water, when this glaze reaches cone 03 the melt is quite fluid. Since there is decomposition happening within the body, gases being generated vent out through surface pores and blow bubbles. I could soak at cone 03 as long as I wanted and the bubbles would just sit there. The one on the left was fired to 100F below cone 03, soaked half an hour (to clear micro-bubble clouds), then at 108F/hr to cone 03 and soaked 30 minutes, then control-cooled at 108F/hr to 1500F. During this cool, at some point well below cone 03, the increasing viscosity of the melt becomes sufficient to overcome the surface tension and break the bubbles. If that point is not traversed too quickly, the glaze has a chance to smooth out (using whatever remaining fluidity the melt has). Ideally I should identify exactly where that is and soak there for a while.

Why did the glaze on the tile craze? The tile is double the thickness of the walls of the mug. Thus, when quenched in ice water, a greater gradient occurs between the hot interior of the clay and the cooling surface.

This terra cotta cup (center) is glazed with G2931G clear glaze (Ulexite based) and fired at cone 03. It survives 30 seconds under direct flame against the sidewall and turns red-hot before a fracture occurs (the unglazed one also survived 30 seconds, it only cracked, it did not fracture). The porcelain mug (Plainsman M370) is glazed with G2926B clear, it survived 15 seconds (even though it is much thinner). The porcelain is much more dense and durable, but the porous nature of the earthenware clearly withstands thermal shock much better. It is actually surprisingly durable.

A book published by Tony Hansen. It explained why were need to think about materials (and the bodies and glazes made from them) as more than just powders. They have physical, chemical and mineralogical presences that do not take a lot of effort to understand. This was the first widely read book to show how, armed with this information and a knowledge of how to do glaze chemistry, readers could solve all sorts of problems. It showcased the real value of the oxide viewpoint in ceramics and explained how to use Digitalfire Insight and Foresight software in each scenario. From 2000-2014, the book was used as courseware in universities around the world. In 2015 the book was temporarily removed from distribution at digitalfire.com awaiting a new edition. Readers were reminded that all of the books content was available at the Digitalfire Reference Library.

These two glazes are both brilliant glass-like super-transparents. But on this high-iron stoneware only one is working. Why? G3806C (on the outside of the piece on the left) melts more, it is fluid and much more runny. This melt fluidity gives it the capacity to pass the micro-bubbles generated by the body during firing. G2926B (right) works great on porcelain but it cannot clear the clouds of micro-bubbles coming out of this body. Even the glassy smooth surface has been affected. The moral: You need two base transparents in which to put your colors, opacifiers and variegators. Reactive glazes need melt fluidity to develop those interesting surfaces. But they are more tricky to use and do not fire as durable.

This is also a common problem at low fire on earthenware clay (but can also appear on a buff stonewares). Those white spots you see on the beetle also cover the entire glaze surface (although not visible). They are sites of gas escaping (from particles decomposing in the body). The spots likely percolate during soaking at top temperate. Some of them, notably on the almost vertical inner walls of this bowl, having not smoothed over during cool down. What can you do? Use the highest possible bisque temperature, even cone 02 (make the glaze thixotropic so it will hang on to the denser body, see the link below about this). Adjust the glaze chemistry to melt later after gassing has finished (more zinc, less boron). Apply a thinner glaze layer (more thixotropy and lower specific gravity will enable a more even coverage with less thickness). Instead of soaking at temperature, drop 100 degrees and soak there instead (gassing is much less and the increasing viscosity of the melt overcomes the surface tension). Use a body not having any large particles that decompose (and gas) on firing. Use cones to verify the temperature your electronic controller reports.

The magic of this recipe is the 5% extra frit, that makes the melt more fluid and brilliant and gives the glaze more transparency where it is thinner on edges and contours. The extra iron in the Plainsman P380 (right) intensifies the green glaze color (vs. Polar Ice on the left). The specks are cobalt oxide agglomerates that were made by slurrying cobalt oxide and bentonite, then crushing it to sizes large enough to make the specks.

Using stonewares it is easy to get pretty sloppy in the studio because a particle of iron or cobalt in a glaze or body is no big deal. But on a ice white, translucent, transparent-glazed piece it is a really big deal. These specks are particles of cobalt that were trapped in my 80 mesh glaze screen from previous use. I use a soft brush to coax the glaze through the screen faster, but even that was enough to dislodge some of the cobalt particles. The lesson: I need a dedicated glaze screen for use with this transparent glaze, it gets used for nothing else.

It is going to be applied to leather hard earthenware and it needs to be thixotropic. Why? I do not want it to run down from the rims of the mugs after dipping. The process: Stir the engobe, pour-fill the mug, pour it out and push it upside down into the engobe. If I can pull it back out before the 10 seconds is up I get a perfectly even gelled layer that does not move. A good test is to stir it then pull out the spatula slowly. If it hangs on in a even layer with only a few drips it is perfect. I also I tip the measuring cup to check it is gelling. Achieving this behaviour requires very careful additions of epsom salts (and thorough mixing between). As the slip approaches this 10 second threshold even a slight bit more salts will turn it into a bucket of jelly! I almost always overdo it! So I keep some thinner slip aside to dilute it down to perfect, not much is usually needed.

Both of these mugs were soaked 15 minutes at cone 6 (2200F), then cooled at 100F per hour to 2100F and soaked for 30 minutes and then cooled at 200F/hour to 1500F. This firing schedule was done to eliminate glaze defects like pinholes and blisters. Normally the GA6-A glaze crystallizes (devitrifies) heavily with this type of firing, but an addition of 1% tin oxide to the one on the left has prevented this behavior.

Typical zero-boron high temperature glazes will not soften in a 1500F decal firing. But low temperature glazes will (especially those high in boron). Even middle temperature ones can soften. G3806C, for example, is reactive and fluid, it certainly will. Even G2926B, which has high Al2O3 and SiO2, has enough boron to soften and sometimes create tiny pits. In serious cases they can bubble like the mug on the right. Why? Steam. It was in use and had been absorbing water in the months since it was first glaze fired at cone 03. The one on the left was not used, but it did have some time to absorb water from the air, it is showing tiny pits in the surface. Even if moisture is not present, low fire bodies especially may still have some gases of decomposition to affect the glaze. One more thing: Fire the decals at the recommended temperature, often cone 022.

This controls all the stepper motors and the heating element and watches temperature and position sensors. It run open source software that knows how to interpret an STL file. As it reads that file steps the z-axis upward for each slice and then prints that layer by moving the printhead and movable bed for the x and y axes.

Objects are printed on a platform that moves along the y-axis. The bed is attached to bushings that run along stainless steel rods. Its position is controlled by a rubber belt that feeds around a pulley in the front and around a gear on a stepper motor at the back. It is heated to prevent printed layers from hardening too rapidly.

The assembly consists of stepper motor with its own cooling fan and a heated brass nozzle mounted in a small aluminum block (at the bottom). The nozzle has a heat sensor and its own cooling fan). A plastic filament feeds down through a hole in a laser-cut aluminum spring loaded part. It has an attached roller that forces the filament against a gear fastened to the motor shaft. When the motor steps it pulls in the filament and feeds it down into the heated print head below. The entire head assembly is screwed to a plate that is in turn screwed to bushings that are pulled along the x-axis by a belt controlled by another stepper motor. The computer can thus control the rate of filament feed, the temperature of the nozzle and the x-position of the entire head.

In this printer the printhead moves along two stainless steel rods (for the x-axis). Its position is controlled by the front top stepper motor (which has a gear through which runs a rubber belt attached to the printhead. The two lower stepper motors with worm gears attached to their shafts control the vertical z-axis position of the printhead assembly. Since the computer controls these motors it can move the head to any position on the x or z axis. Vertical z-movement is slower and more precise since it determines the thickness of each slice to be printed.

This was typical of many made during the 1980s and sold in a gallery in Brandon, Manitoba. Tony was inspired by the work of John Porter and emulated many of his techniques. This is a dark burning iron stoneware clay, H440, fired at cone 10 reduction.

Made in southern Alberta around 1960. They were extruded and then hand assembled.

I finally gave up trying to dry the inner section of this DFAC test. During that test the inner part of the disk is shielded from the air flow or heat lamp. This sets up a shrinkage gradient that encourages cracking of the sample. But with some clays drying can be so slow that it can take a days. Serious cracking and high drying shrinkage almost always accompanies this phenomenon.

From Robert Self. This firing went past cone 13. The body is Laguna Speckstone.

Made by Robert Self. This is Laguna White Stoneware body fired to cone 13 in a Manabigama wood fired kiln.

These are made from Plainsman Polar Ice translucent NZ porcelain. The one on the right was used in the coffee room of the plant and washed between uses in a common manner (which is: not very much!). The stains are obviously not nearly as visible on a stoneware mug.

This Advancer Nitride-bonded Silicon Carbide shelf is 26 inches wide (by 1/4 inch thick) weighs 9 lbs. These are incredible durable and strong. However there are cautions to their use. They can act as an electrical conductor so must not contact elements and should not be used in kilns with unpinned elements protruding from grooves. They must be stored in a dry place to prevent moisture penetration (which can cause a steam explosion during heatup). The company has a recommend drying schedule if shelves do absorb moisture (the application of kiln wash is not considered a prolonged exposure and is OK).

Sanitary ware factories optimize their slips to have the lowest possible specific gravity for production volume reasons. Potters would be happy with 1.7 SG whereas numbers approaching 1.9 SG are common in factories. They often teeter on the edge of issues like this (sections softening causing localize warping) and inexperienced technicians can be unaware of the critical balances needed to prevent loss in production.

It is important that during all stages of drying gradients (sections of different stiffnesses) do not develop in pieces. Thus I like to attach handles as soon after throwing as possible. An unavoidable gradient develops anyway because the rims need to be stiff enough to attach the handles without going out of shape too much. Now how can I stiffen these mugs for trimming and even them out at the same time? The first key is to put them on a plaster bat (as I have done here). Then I cover them with a fabric (arnel fabric works well because it flows). Then I put the whole thing into a large garbage plastic bag folded underneath to seal it. The plaster stiffens the bases and absorbs moisture in the air to stiffen the walls also. The next day every part of the piece is an even leather hard.

On the top you can see the color difference. The other porcelain is made from a low TiO2 mix of typical North American kaolins, feldspars and bentonites. Bottom with a light inside: Polar ice on the left is far more translucent. Yet it is not overly mature, it resists fired warping remarkably well. And it is also more plastic (which seems impossible). There is a secret to the translucency that goes beyond the fact that it employs New Zealand kaolin and the percentage of feldspar it has. But I cannot tell you. But if you read this site carefully you will discover it in the most unlikely place!

It took 2-3 minutes to get this mug to soft leather hard for trimming using a heat-gun (not a blow drier). It took seconds to stiffen the handle for attachment after. I am now taking it to stiff leather hard to prepare for glazing (left). I dry it evenly by judicious technique. Then I pour-glaze the inside and immediately push it lip-down down into the glaze to do the outside. I re-gun it a couple of minutes and then re-dip the outside bottom (up to the previous glaze boundary). Last I gun it another 3 minutes an put it in the kiln. The lesson: The key is not drying speed. It is how even the drying is (I watch the color change and focus on the wettest parts). Finally I fire 400F/hr to cone 6 (with an hour soak at 250F for final water smoking). The clay: Plainsman M370.

Why the difference? The one on the right (Plainsman M370) is made from commodity American kaolins, ball clays, feldspars and bentonite. It looks pretty white-firing until you put it beside the Polar Ice on the left (made from NZ kaolin, VeeGum plasticizer and Nepheline Syenite as the flux). These are extremely low iron content materials. M370 contains low iron compared to a stoneware (less than 0.5%) that iron interacts with this glaze to really bring out the color (although it is a little thicker application that comes nowhere near explaining this huge difference). Many glazes do not look good on super-white porcelains for this reason.

The center portion was protected while the perimeter dried and shrank first (reshaping the central section). No cracks. But as the central area hardened it reached a point where it was stiff enough to impose forces that forced two cracks to start from the outer edge (opposite each other), these grew inward and found each other. Then the gap widened to dissipate more of the stresses (the width of this gap relates to the drying shrinkage of the clay). But the accelerated pace in the top disk left more stresses, they were relieved by the other hairline cracks from the outer edge, these happened at the very end.The lesson: The stage was set for cracking on both samples very early in the drying process. But the actual cracks occurred very late. Accelerating the process only created small extra edge cracks (on top disk).

This cup is being force dried with a heat gun. The speed of the drying is not the problem. I can dry this mug in minutes as long as I apply the heat evenly to all surfaces. But in this case I have dried the side walls first and the base is far behind. The first surprise is where the crack starts: It is actually the meeting of two, they each start at the outside edge (that is where the stress encounters clay stiff enough to crack). Another surprise is when: Near the end of the process the cracks suddenly grow (these photos span only about a minute). The way it which the two cracks find each other at the center produces the characteristic S-crack.

Crystallization (also called devritrification). You can see the tiny crystals on the surface of this copper stained cone 6 glaze (G3806C). The preferred orientation of oxides in crystalline, especially when metal oxides are present. When kilns cool quickly there is simply no time for oxides in an average glaze to organize themselves and crystals do not grow. But if the glaze has a fluid melt and it cools slowly through the temperature at which the crystals like to form, they will.







This is an exchange I had on Facebook on this topic. Many people believe cracks are caused by high water content, high shrinkage clay, not compressing the base when throwing, throwing off the hump or stretching the clay excessively when throwing. But I break some or all of these rules every time I make mugs and have almost no cracks. Why? Because the reason pieces crack is unevenness in wall thickness and drying. And I make sure both are even.

The key is avoidance of methods that result in one part of the piece being stiffer at any stage of drying (not vinegar in the water, compressing the bottoms, etc.). Throw mugs with walls of even thickness. Put them on a plaster bat (it dewaters the base). Make the handles a while after you have made the mugs (they stiffen quicker). Apply them as soon as the rims are stiff enough to maintain shape (in my climate, two hours). Use a join method that enables application of lots of pressure (better than scoring). Use only enough slip (of thick cream consistency) to make the join (no excessive squirting out at the perimeter). Pack all the mugs closely on bats, rims up, cover with flowing cloth (e.g. arnel). Put them inside big bags or wrap plastic around and tuck it under. Trim the bases the next day (to the same thickness as the walls). Place rims down (with handles at the center) on smooth batts (not plaster) and cover them with large fabrics that can wrap under leaving no holes exposed to the outside air (in our dry climate two days dries them).

If your drying glaze is doing what you see on the left, do not smooth it with your finger and hope for the best. It is going to crawl during firing. Wash it off, dry the ware and change your glaze or process. This is Ravenscrag Slip being used pure as a glaze, it is shrinking too much so I simply add some calcined material to the bucket. That reduces the shrinkage and therefore the cracking (trade some of the kaolin in your glaze for calcined kaolin to do the same thing). Glazes need clay to suspend and harden them, but if your glaze has 20%+ kaolin and also bentonite, drop the bentonite (not needed). Other causes: Double-layering. Putting it on too thick. May be flocculating (high water content). Slow drying (try bisquing lower, heating before dipping; or glaze inside, dry it, then glaze outside).

Often ceramic clays are described on data sheets primarily by their chemistry (and requested as such). This is typically done at the expense of physical properties data. For example, Tapper clay is employed to plug the drain hole of ladles used to melt metals in the smelting industry. The operators of that equipment confront, in the physical presence of the material, many properties that have no relation to the chemistry (e.g. plasticity, shrinkage, water content). Notice also that the chemistry is not correct anyway, it species calcined material yet does not total 100. It specifies no carbon, yet this chemistry is like a ball clay, all of which have some carbon.

The gloss on this low fire red clay is not the product of a glaze or any kind of glass development. It is from a layer of incredibly fine clay on the surface (a process called Terra Sigillata). It is the product of a lengthy research project by Monika. She investigated many materials, techniques, clay bodies and firing schedules.

The walls are very thin, yet no trimming was done to make them thin. Why? It is super plastic. Others claim to be plastic, but they use the word in a relative sense. They mean a little less flabby than that other really flabby porcelain! Polar ice, when it has the right water content (dewater it on a bat if needed), is tough enough to throw as large as even the most plastic stonewares. It might seem impossible that a body this translucent can be as plastic as it is, read its data sheet to find out how they did it.

This sanitary ware tank lid was made in China. Notice how thick the white glaze is being applied to cover the iron containing body below. This is a testament to how opaque a zircon opacified glaze can be. Of course, high percentages create a stiffer glaze melt and conditions can more often combine to produce crawling like this.

Low temperature white talc body with bright glazes.

Made using low fire white earthenware and glazes

This glaze consists of micro fine silica, calcined EP kaolin, Ferro Frit 3249 MgO frit, and Ferro Frit 3134. It has been ball milled for 1, 3, and 6 hours with these same results. Notice the crystallization that is occurring. This is likely a product of the MgO in the Frit 3249. This high boron frit introduces it in a far more mobile and fluid state than would talc or dolomite and MgO is a matting agent (by virtue of the micro crystallization it can produce). The fluid melt and the fine silica further enhance the effect.

Mineral sources of oxides impose their own melting patterns and when one is substituted for another to supply an oxide a different system with its own relative chemistry is entered. An extreme example of this would be to source Al2O3 to a glaze using calcined alumina instead of kaolin. Although the formula may be exactly the same, the fired result would be completely different because very little of the alumina would dissolve into the glaze melt. At the opposite extreme, a different frit could be used to supply a set of oxides (while maintaining the overall chemistry of the glaze) and the fired result would be much more chemically predictable. Why? Because the readily and release their oxides the the melt.

This is a road-side stand in Mexico in 2016. Each of these "cazuelas" (casseroles) have a flame under them to keep the food inside warm. The pedestal is unglazed. The ware is thick and heavy. The casseroles are hand decorated with under glaze slip colors and a very thin layer of lead glaze is painted over (producing a terra sigilatta type appearance, but with brush stoke texture). These have been made and used here for hundreds years. How can they not crack over an open flame? The flame is small. The clay is fired as low or lower than potters in Canada or the US would even fired their bisque. It is porous, open and able to absorb the stresses. They know these pieces are not strong, so they treat them with care.

It is made from 85% Ferro Frit 3134, 7.5% kaolin and 7.5% silica. While not obvious from the recipe, one look at the chemistry of this (as displayed when you enter a recipe into your account at insight-live.com) will show very low Al2O3. Frit 3134 has almost no Al2O3, yet it is an essential component of functional glazes (for durability, resistance to crystallization, stability during firing). The kaolin is the only contributor of Al2O3 and there is only a little. A simple fix would be to use Ferro Frit 3124 instead, remove the silica and increase the kaolin to 15.

This happens. They are glossy, but lack thickness and body. They are also prone to boron blue clouding (micro crystallization that occurs because low alumina melts crystallize much more readily on cooling). Another problem is lack of resistance to wear and to leaching (sufficient Al2O3 in the chemistry is essential to producing a strong and durable glass). This is a good example of the need to see a glaze not just as a recipe but as a chemical formula of oxides. The latter view enables us to compare it with other common recipes and the very low Al2O3 is immediately evident. Another problem: Low clay content (this has only 7.5% kaolin) creates a slurry that is difficult to use and quickly settles hard in the bucket.

This was made by a potter who carefully designed his own body and glaze recipe and obtained a high quality kiln in which to fire a line this line of ware. These pieces are being used in a restaurant and this one has failed. Why? It could be pushing up against the limits of this type of clay body (even at its best). Compared to what typical restaurant ware is made from it has more porosity (demonstrated by the color change around the crack). It likely has entrapped carbon inside. It has lower strength (a big issue restaurant ware which is handled so much). Larger particles of high expansion minerals create vulnerability to sudden temperature changes. If this is all true then all of the bowls will eventually crack. That being said, what if they do not all crack? Maybe this crack appeared to relieve stresses within the ware from uneven drying or uneven firing (due to technique or uneven thickness). Some bodies expand upon absorbing water, if that is the case with this then the bare clay surfaces (which permit water entry) could be an issue also.

Low fire terra cotta mugs have cracked. Why? The white glaze is under compression, its thermal expansion is too low (that is why it is also shivering off the rim). As the piece is cooling the kiln the thick layer of white glaze first solidifies. As cooling proceeds the body shrinks (thermally) at a faster rate than the glaze. The puts the glaze under compression and stretches the body. As some point (e.g. last stages of kiln cooling, a thermal stress during use) the body cracks to relieve the stress (notice how the white glaze is pushing the cracks apart). Neither the body or glaze are at fault, in this case they are simply made by different manufacturers and are thermal expansion incompatible. One solution would be to mix it with a white glaze that is crazing (the opposite problem). Or you could add some nepheline syenite to the glaze to increase its thermal expansion (maybe 10% by dry weight).

A screen-shot from Insight-live.

The simple answer is that you should not. The chemistry of stains is proprietary. Stain particles do not dissolve into the glaze melt like other materials, they suspend in the transparent glass to color it. That is why stains are color stable and dependable. In addition, their percentage in the recipe, not the formula, is the predictor of their effect on the fired glaze. Of course they do impose effects on the thermal expansion, melt fluidity, etc., but these must be rationalized by experience and testing. But you can still enter stains into Insight recipes. Consider adding the stains you use to your private materials database (for costing purposes for example).

This is a common problem for people who mix their own clay bodies, using raw, unground clay materials.

Drying crack on the inside of a mug at the handle join. Why?

These are four terra cotta body disks that have been fired to cone 10 reduction. The fluxing action of the iron has assisted to take them well along in melting. Notice that one is hardly bubbling at all, it is Redart clay that has been ground to 200 mesh (the lower right one is a body mix of 200 mesh materials also containing it). The upper left one is bubbling alot more. Why? Not just because it is melted more (in fact, the one on the lower left is the most melted). It is a body made from clays that have been ground to 42 mesh. Among the particles are larger ones that generate gases as they decompose. Yes, the particles in the others do the same, but their smaller size enables earlier decomposition and expulsion of smaller gas amounts distributed at many more vents. Some bodies cannot be fired to a point of zero porosity, they will bubble before they get there.

These are jiggered lids made from Plainsman M340 middle temperature stoneware. The one on the right was sponged in the dry stage to smooth issues that occurred during jiggering. That has exposed speck producing particles that were under the surface. This body is made from quarried materials that are ground to 42 mesh.

Notice the inside of this large transparent glazed cone 6 stoneware bowl. There is a concentration of specks on one part because that area was sponged at the leather hard and dry stages to smooth surface problems that happened during the jiggering process. These specks are normally driven below the surface during forming.

These were used in the early 1900s to make crocks up to 60 gallon size in the Medalta Potteries factory in Medicine Hat, Alberta, Canada. The metal barrel was fitted with a wooden base, then lined with paper. Then the clay was rolled up the side and surface finished. The barrel was then dropped and the crock removed.

Low fire glazes must be able to pass the bubbles their bodies generate (or clouds of micro-bubbles will turn them white). This cone 04 flow tester makes it clear that although 3825B has a higher melt fluidity (it has flowed off onto the tile, A has not). And it has a much higher surface tension. How do I know that? The flow meets the runway at a perpendicular angle (even less), it is long and narrow and it is white (full of entrained micro-bubbles). Notice that A meanders down the runway, a broad, flat and relatively clear river. Low fire glazes must pass many more bubbles than their high temperature counterparts, the low surface tension of A aids that. A is Amaco LG-10. B is Crysanthos SG213 (Spectrum 700 behaves similar to SG13, although flowing less). However they all dry very slowly. Watch for a post on G2931J, a Ulexite/Frit-based recipe that works like A but dries on dipped ware in seconds (rather than minutes).

These two specimens are the same terra cotta clay fired at the same temperature (cone 03) in the same kiln. The chemistry of the glazes is similar but the materials that supply that chemistry are different. The one on the left mixes 30% frit with five other materials, the one on the right mixes 90%+ frit with one other material. Ulexite is the main source of boron (the melter) in #1, it decomposes during firing expelling 30% of its weight as gases (mostly CO2). These create the bubbles. Each of its six materials has its own melting characteristics. While they interact during melting they do not mix to create a homogeneous glass, it contains phases (discontinuities) that mar the fired surface. In the fritted glaze all the particles soften and melt in unison and produce no gas. Notice that it has also interacted with the body, fluxing and darkening it and forming a better interface. And it has passed (and healed) most of the bubbles from the body.

It also contains less than 10% borax frit and some Cornwall stone.

This glaze is on very thick. That gives it the power to impose its thermal expansion (which is different that the body) to the point where it literally flakes off. The problem is worsened when the glaze and body lack fluxes, that means they do not interact, no glassy interface is formed.

This clay normally dries well, but not this time. Strangely, this crack is not at the handle join, it is penetrating into the mug wall. Actually, this is not a crack, it is a split. Excessive slip around the join was not removed, that is bad when a body has larger particles, they permit water left on the surface to penetrate inward and begin a split. An aggravating factor was that the handle was allowed to dry faster than the mug itself, pulling at this join and opening the split even more.

This body is a plastic fireclay base having 13% 20/48 grog and 10% 65 mesh silica sand. But the texture is far coarser than one would expect. That is because it has 4 cubic feet of perlite per thousand pound batch. If desired the surface can be trowel smooth. This works well partly because the perlite particles are soft and easy to crush.

The body is a 50:50 talc:ball clay mix, it is very smooth and slick so the only particulate is from the grog. In this case the grog addition is being used to make the body resistant to thermal shock failure (for use as a flameware). The body itself is not low expansion nor are the grogged particles. But the sheer quantity of aggregate particles and their size creates an open porous matrix that makes it difficult for cracks to propagate. Of course lots of burnishing, an engobe or a thick glaze layer will be needed to make this surface functional. We could call this the "crow-bar" approach to flameware.

These two unglazed porcelain tiles appear to have a similar degree of vitrification, but do they? I have stained both with a black marker pen and then cleaned it off using acetone. Clearly the one on the right has removed better, that means the surface is more dense, it is more vitreous. In industry (e.g. porcelain insulators) it is common to observe the depth of penetration of dye or ink into the matrix as an indication of fired maturity.

The mug on the left was in a hotter part of the kiln (gas reduction), it's surface is brilliant glassy smooth and metallic. The one on the right is dull, pebbly, much less interesting. The temperature difference is about one cone. This is not enough to make much difference in the transparent glaze, but the tenmoku is sensitive, it needs to reach the full temperature.

On the right is a porcelain used in China, renowned for its whiteness and translucency. On the left is a body made from Grolleg kaolin, this is commonly used by potters. They were fired in reduction. The tiny iron specks that potters do not even notice are enemy number for the blue-white porcelain like this. Although they might be small the reduction atmosphere makes them blossom out in full glory to ruin the piece. These specks come as contaminants in the materials (especially the silica) and they are easily picked up during fabrication. For very white bodies like this, it is incredibly difficult to prevent the specks. For a perfectly white flawless result, the entire factory must be dedicated to this one body; they use wet processing, magnets, filter pressing, stainless steel equipment and impeccable procedures.

This is a flameware, made from a recipe promoted by a popular website. Are they serious? How could you throw this? Maybe it is possible, but we need an explanation. How could the page fail to mention how coarse this surface would be? How porous and weak ware would be? We find many body and glaze recipes on the internet. These almost always just sit there, taking screen space, not explaining themselves in any way.

EPK has a much higher fired shrinkage. This is counter intuitive because Grolleg is known to produce more vitrified porcelains. It also appears whiter yet in a porcelain body the Grolleg will produce a much whiter fired product. This means that to compare porcelains we need to see them "playing on the team", in a recipe working with other materials, to see their the properties they really contribute.

These are fired at cone 10R. The kaolin bowl on the left survived 2 seconds! The ball clay next to it: 4 seconds. The Helmer clay (halloysite/kaolin) next to that: 8 seconds. The white stoneware piece: 14 seconds. A commercial stoneware mug could survive for 50 seconds or better. Thermal shock resistance is a complex subject. Of course, the size, thickness and contour of the ware are important. But many other factors come into play: quartz particle content and size, degree of maturity, thermal expansion of the matrix, homogeneity of the matrix, presence and fit of the glaze, internal structure of the mineral species (if the ware is not vitreous), their particles sizes and shapes, presence and type of aggregate (or grog), brittleness of the matrix, and more.

The cup on the left is raw, unground, ball clay (Plainsman A2 fired to cone 10 reduction). It cracked under a flame in only 4 seconds. The 200 mesh version on the right lasted 14 seconds (it is broken because I dropped it). It would appear that the larger quartz particles in the material on the left are imparting much less resistance to thermal shock failure.

This is a sculpture body named Industrial Crank from Potclays in the UK. I dried some out, slurried and screened the grog out then dewatered the remaining clay to get this. There is almost 50% grog. Yet this body is known for amazing plasticity and toughness. How is that possible with this much grog? That base clay. It is extremely sticky and plastic. Yet it has only 6% drying shrinkage. The grog has a narrow range of sizes, from about 35 mesh to 70 mesh (a high percentage is of the coarsest size). Yet amazingly, the body does not feel coarse. Why? Again, it is this clay base. Each grog particle is nestled in a buffer that firmly holds it yet gives it freedom to move. I am working on a complete report and will share from my Insight-live.com account soon.

A recommended flameware recipe from a respected website (equal parts of 35 mesh grog, talc and ball clay). Looks good on paper but mix it up for a surprise. The texture is ridiculously coarse. Recipes like this often employ fire clays and ball clays, but these have high quartz contents (in a test like this a ball clay vessel could easily fail in 5 seconds). But this one is surviving still at the 90-second mark. Or is it? While porcelain pieces fail with a spectacular pop of flying shards, these open-porous bodies fail quietly (note the crack coming up to the rim from the flame). There was an intention to create cordierite crystals (the reason for the talc), it is hard to say whether than happened or not. But the porosity of 12.5% would be difficult to deal with. On the positive side, you could likely continue using this vessel despite the crack.

Notice he starts from the bottom and works his way upward.

This designation is an international standard for a general purpose respirator to filter out respirable quartz particles (which cause silicosis). Use one of these when working in a area where ventilation is insufficient to remove all of the dust. Use it also in circumstances where there is temporary generation of large quantities of dust. Do not wear this as a substitute for keeping floors and working areas clean.

These are the inside uppers on two mugs made from the same clay with the same clear glaze. The one on the left was fired in a large electric kiln full of ware (thus it cooled relatively slowly). The one on the right was in a test kiln and was cooled rapidly. This glaze contains 40% Ferro Frit 3134 so there is plenty of boron and plenty of calica to grow the borosilicate crystals that cause the cloudiness in the glass. But in the faster cooling kiln they do not have time to grow.

The material is much less dense than most other ceramic materials (that is why these bags are so tall). When moved the powder within becomes unstable and they are prone to falling over.

The SIAL grog is made by RHI Refractories. Christy is from Christy Minerals. The Mullite is not really a grog but neither is it a powder, it is made by Mulcoa Refractories.

A is a matte white, B is Rich Iron Red and C is a glossy white. Recipes 1 and 2 are 75% A, 6 and 10 are 75% B, 9 and 12 are 75% C. 3, 4 and 5 are 50% A, 3, 7 and 11 are 50% B. 5, 8 and 11 are 50% C. This blend was done in 1977 in the lab at Plainsman Clays.

The result is much less predictable than for blending existing known glazes, these reservoirs contain the runoff if the melted result is excessively fluid.

Encapsulated stains can reach their limits in a glaze host at cone six and begin to dissolve and decompose. That is an obvious problem on a food surface. But in a less fluid underglaze they can survive longer. The bright orange color on the left was likely done this way. The transparent over glaze is isolating it from any contact with food or drink. However people are more wary of the risk of glazes leaching heavy metals and having bright colours on food surfaces may not send the right message.

Left to right (all fired at cone 10): Pure 200 mesh kaolin vitrified at cone 10 cracked in two seconds. Next is a 42 mesh more refractory ball clay, it failed in four seconds. A refractory halloysite/kaolin material failed in eight seconds. A white glazed stoneware failed in 14 seconds.

This is a cone 10R copper red. First, it is thick. "Thick" brings it own issues (like running, blisters, crazing). But look what is under the surface. Bubbles. They are coming out of that body (it is not vitreous, still maturing and generating them in the process). The bubbles are bringing patches of the yellow glass below into the red above. Normally bubbles are a problem, but in this decorative glaze, as long as everything goes well, they are a friend.

This mug has thin walls and was bisque fired to cone 04 (so it had a fairly porosity). As a result the glaze went on thinner when it was dipped. This was not evident at the time of glazing but at firing the thinner sections produced the brown areas.

Top: A thin porcelain tile with etched design. Bottom: The same tile with a back light. By Stephanie Osser.

This is a low fire fritted stoneware fired to cone 03. But it still has about 4% porosity. The green underglaze is not developing enough glass to bond well with the body surface. Repeated blows to the surface by a hammer are chipping off chunks of glaze/underglaze at the bond with the body. This is not happening with the other underglazes. The green underglaze is obviously more refractory than the others and should be reformulated.

The stoneware has a higher silica content and is not vitreous. This means there are more quartz particles to impose their high expansion because fewer are taken into solution by the feldspar.

The 500-600C zone is the alpha-beta inversion of quartz. Notice the vitreous body experiences a bigger expansion change there. But in the 100-270C cristobalite inversion region the stoneware undergoes a much more rapid change (especially in the 100-200C zone). This information affects how ware would be refired in production to avoid cracking (slowing down in these two zones). In addition, that stoneware would not be a good choice for an ovenware body. Photo courtesy of AF

Herend is a Hungarian manufacturing company, specializing in luxury hand painted and gilded porcelain. They host an international ceramics studio and bring in artists from around the world to work with their porcelain and in their techniques.

The clay is Plainsman H431. Fired at cone 10R. Tony learned how to make these bowls from John Porter in the early 1970s. They were glazed on the inside with the rough, bare clay surface on the outside. Decoration was done by a wax resist technique. The glaze is a silky dolomite matte with rutile and a little cobalt added for the powder blue color.

This is the unglazed surface. Very heavily grogged, very large grog particles.

The fired clay is vitreous and lightly grogged (large particles).

Clay is vitreous and heavily grogged. But it is white burning. Notice the orange color is developing at the glaze/body interface and shows where the glaze is thin. This is glossier than what one would normally expect a Shino to be.

The white engobe was applied by pouring at leather hard stage. The underglazes were also painted on at leather hard. The mugs were then dried, cleaned, bisque fired, dipping in clear glaze and final fired to cone 03. The clay and engobe have frit additions to make them vitrify at low temperatures.

These terra cotta mugs are fired at cone 03. Although the glaze on the left one is melted well the terra cotta itself has a porosity of more than 10%. The mug on the right is a finer grained terra cotta with added frit to make it vitrify. It is thus dramatically stronger and more durable, rivalling high temperature stoneware. Neither of the glazes are crazed, but the glaze on the right is much more firmly attached and resistant to future crazing. Does the mug on the left have an advantage? Yes. Although both can withstand hot coffee being poured in, the one on the left can withstand more dramatic thermal shocks without the piece itself cracking.

The mug on the left is high temperature Plainsman P700 (Grolleg porcelain). The other is Plainsman Zero3 fired at cone 03. Zero3 has a secret: Added frit which reduces the porosity of the terra cotta base (therefore increasing the density) dramatically. How? The frit melts easily at cone 03 and fills the interparticle space with glass, that glass bonds everything together securely as the piece cools. Although I do not have strength testing equipment right now, I would say that although the P700 mug likely has a harder surface, the Zero3 one is less brittle and more difficult to break.

This is a common problem with these glazes. The visual effect is very compelling but also punishing! Potters experiment with higher bisque firing and soaking during bisque. They try cleaner clay bodies. They employ long hold periods at temperature in the glaze firing. But the problem persists. The solution is actually simpler. These glazes have a high melt fluidity and enough surface tension to hold a bubble static during soaks at temperature (no matter how long you hold it). It is better to cool the kiln somewhat (perhaps 100F) and soak at that temperature. Why? Because the increasing viscosity of the melt overcomes the surface tension that maintains the bubbles. You may need to cool more or less than 100 degrees, but start with that.

These bowls are made from a talc:ball clay mix, they are used for calcining Alberta and Ravenscrag Slips (each holds about one pound of powder). The one on the right was bisque fired to cone 04 (about 1950F). The one on the left was fired to only 1000F (540C, barely red heat), yet it is sintered and is impervious to water (strong enough to use for our calcining operations). That means that there is potential, in many production situations, to bisque a lot lower (and save energy). Primitive cultures made all their ware a very low temperatures. Tin foil melts at 660C (1220F) yet can be used on campfires for cooking (so the temperatures of primitive wares would have been low indeed).

This is a slug of Grolleg porcelain that is about 1 year old. When pugged it was perfect homogeneous white. These streaks and specks have all developed over time as it ages. A slice of this cross section fires pure white.

Any numbers relate to the type of clay being used (often a test). In this case, the body is Plainsman P300. The fluted foot ring (for better draining in the dishwasher) is also a tell-tale sign the mug might be made by Tony.

The work of Pierre Aupilardjuk and John Kurok from Rankin Inlet, Nunavut, Canada. They are visiting the Medalta International Artists in Residence program in Alberta during the fall of 2016 to demonstrate their firing technique. First they sculpt the pieces from a medium temperature stoneware (lightly grogged body), then dry and apply terra sigilata. Finally they bisque them. Next they carefully stack items into a 45 gallon drum with fine wood chips filling all spaces. The drum has an expanded metal mesh a few inches up from the bottom, this creates an air space (holes around the outside of this airspace allow air in from the bottom). They light the wood on fire at the top and put the lid on. This burns for a couple days (a hole in the lid permits enough ventilation to enable the wood to slowly burn and smoke. The black finish is glossy and clean.



This clay was slurried in a mixer and then poured onto a plaster table for dewatering. During throwing it is splitting when stretched and peeling when cutting the base. Yet when this same clay is water-mixed and pugged in a vacuum de-airing pugmill it performs well. One might think that the slurry mixer would wet all the particle surfaces better than a pugmill, but it appears the energy that the latter is putting into the mix is needed to develop the plasticity when there is a high talc percentage in the recipe.

These are the same glazes. The one on the left had a specific gravity of 1.45 and the slurry was creamy and appeared to be good. However when this bisque porcelain mug was pulled out of the slurry (after the dip) the glaze dried so fast that it would not even out around the lip (even though I rolled it). To fix this I added water to take it to 1.43 specific gravity, they I added epsom salts to gel it back to the same creamy consistency it was. This time it went on evenly, dried more slowly and stayed even. Notice the darker color, is it still damp. Although the piece dries enough to handle in less than 30 seconds, it does take longer to dry completely.

A transparent glaze appears to have been colored using green, blue and red stains. The slip is the porcelain itself. The bottoms of these pieces are signed "Law". Someone gave them to me years ago. Do you know who it is?

This is the only place we have noted separation with this engobe and body. The engobe was gelled and the piece was drained upside down. So this edge was thicker. The separation occurs to the convex contour a couple of mm down (and breaks away to that point). The engobe is more plastic that the clay and thus shrinks more. Normally the extra stickiness from the extra plasticity is an asset, but not always.

Custer feldspar and Nepheline Syenite. The coverage is perfectly even on both. No drips. Yet no clay is present. The secret? Epsom salts. I slurried the two powders in water until the flow was like heavy cream. I added more water to thin and started adding the epsom salts. After only a pinch or two they both gelled. Then I added more water and more epsom salts until they thickened again and gelled even better. They both applied beautifully to these porcelains. The gelled consistency prevented them settling in seconds to a hard layer on the bucket bottom. Could you do this with pure silica? Yes! The lesson: If these will suspend by gelling with epsom salts then any glaze will. You never need to tolerate settling or uneven coverage again! Read the page "Thixotropy", it will change your life as a potter.

Most people think that would be impossible. But it is not. This slurry will stay in suspension for days. How? It is flocculated using a tiny bit of epsom salts. Without the epsom salts it is watery and will settle in seconds. How does the slurry apply to this porcelain? Since it contains no clay it has complete permeability. Against the immersed bisque a layer builds very rapidly, pieces must be dipped and removed immediately. Does it dry hard enough to handle? Yes.

Brilliantly glossy. The body is Plainsman Polar Ice porcelain. Firing is cone 6 oxidation. The reduction fired effect is particles (or agglomerates) from one of the raw metal oxides in the recipe (iron, cobalt, rutile; most likely the cobalt). If this glaze were ball milled the effect would be lost. Even though the glaze is so glassy, it is not running down off at the foot. The blue where it thickens on contours is because of the rutile, this can be removed for a truer Celadon effect (if it is not causing the specks).

The ppm items are not oxides, they are elements. Ba for example, is shown as 4276 ppm. We do not know the form. It could be barium sulphate, barium carbonate, barium nitrate, barium chloride. But altogether they supply this amount of Ba. The same is true of chrome, strontium, nickel and vanadium.



Each potter using Tenmoku has their own preferences about how the glaze should look. Ron clearly likes the iron crystals to develop well on the edges of contours. He has learned how to walk a delicate firing and recipe balance to achieve this effect. If the percentage of iron is too high, or the glaze is applied too thin, reduction is too heavy or the cooling too slow there will be too muchy crystallization. If the iron is too low, cooling is too fast or the glaze it too thick it will be a solid black. Additionally, this effect depends on a glaze having a fluid melt (the iron is a strong flux), if the glaze is too thick it will run downward during the firing.

This is a talc body (Plainsman L213, about 50:50 talc:ball clay). They are fired to cone 04 (left), 03 (center) and 02. The glaze is G2931F, it fires crystal clear. Each of these cups has been subjected to "boiling water to ice water to boiling water" immersions. The cone 04 one crazed. The cone 02 cup cracked (the denser matrix could not withstand the shock) but did not craze (although it showed a hint of shivering). The center cup, fired at cone 03, is perfect.

This slurry is just water and 295 mesh silica. I have mixed it to 1.79 specific gravity and it is creamy. It applies like a glaze to bisque ware (if I dip it fast) and goes on super smooth and even. It does settle, but only slowly. Unlike feldspar and nepheline syenite, if I thin it a little and add epsom salts or vinegar it does not gel, no matter how much I put in. The only response I can see is that it appears to settle out a little less. I was always taught that clay is needed to suspend things, every thing else will settle out like a rock if there is no clay present in the slurry. Of any material, this is one that I would have expected to settle out the fastest.

The tip of the firing cone 03 on the left has just touched and it is beginning to deform. Yet the guard cone 02 is not moving at all and the cone 04 is practically melting. However the tip of the cone 7 firing cone on the right has not quite touched. But the cone 8 is already well on the way and the cone 6 touched not long ago. Yet cones separate by about 30 degrees in both ranges. Why the difference here? At low fire the kiln can climb quicker so less heat-work is done (that is what bends cones). Also, the iron-based low fire cones are more volatile and begin and complete their fall through a narrower range. So at low fire cones can be an absolute measuring device. But at high temperature their use is more about comparing behavior firing-after-firing and adjusting procedure by that experience.

The same pugmill (back and front). One is stainless steel. Potters claim that they can dump almost anything into these machines (even dry scrap) and as long as they add the right amount of water the devices will mix and vacuum extrude a finished slug. Considering how portable these are they are an amazing device. However, these are no match for a large industrial pugmill. In the quantity of material they can produce, but also in the quality. They have few or even no blades on the main shaft, only augers. They contain no or only a rudimentary shredder feeding the vacuum chamber and little dwell time in the both chambers.

Polar Ice (Plainsman Clays) has been fired to cone 10R (left). This is beyond the recommended cone 6 range, but it worked well in this instance. The result is even more translucency and a translucency of a different character: blue! This looks much more like real blue polar ice.

Notice that where there is a glaze cover on the outside there is no cracking. It is inherently risky to glaze ware only on the inside if you are not able to determine the fit. This is especially so if the body is not vitreous and does not have the strength to resist the pressure.

Medium temperature transparents do not shed micro bubbles as well, clouds of these can dull the underlying colors. Cone 6 transparents must be applied thicker. The stains used to make the underglazes may be incompatible with the chemistry of the clear glaze (less likely at low fire, reactions are less active and firings are much faster so there is less time for hostile chemistry to affect the color). However underglazes can be made to work well at higher temperatures with more fluid melt transparents and soak-and-rise or drop-and-soak firing schedules.

The solubles salts form the brown coloration on the clay surface. While the actual salt layer is very thin, it is enough to glue parts of the base to the kiln shelf (if the latter does not have adequate kiln wash or sand). This is even more important when the glaze line is close to the foot.

This stoneware mug was glazed inside and halfway down the outside with pure silica. At some point during heatup the outside layer, not shrinking like the piece, simply fell down. And was sintered enough to hang together and remain intact through the rest of the firing (on the inside, the shrinking forced the silica to flake off into a pile at the bottom). Cone 10 has sintered the silica enough that it will not slake in water but it is fragile and soft and must be handled carefully.

These were applied to the bisque as a slurry (suspended by gelling with epsom salts). The nepheline is thicker. Notice the crazing. This is what feldspars do. Why? Because they are high in K2O and Na2O, these oxides have by far the highest thermal expansions. So if a glaze is high in feldspar it should be no surprise that it is going to craze also.

These porcelain mugs were decorated with the same underglazes (applied at leather hard), then bisque fired, dipped in clear glaze and fired to cone 6. While the G2926B clear glaze (left) is a durable and a great super glossy transparent for general use, its melt fluidity is not enough to clear the micro-bubbles generated by the underglazes. G3806C (right) has a more fluid melt and is a much better choice to transmit the underglaze colors. But I still applied G2926B on the inside of the mug on the right, it has a lower thermal expansion and is less likely to craze.

But it is better not to. Left is an unglazed (but bisque fired) mug. Right is the same thing with with G2931F clear glaze fired on at cone 03 (G2931G would fit without crazing). Since the clay is not porous the glaze must be gelled to hang on and the ware needs to be heated before dipping (or it takes too long to dry). It also needs to be applied thicker. It is very difficult. It is better to use a fritted low fire porcelain and put the G2931F glaze on it.

Both pieces have a transparent glaze, G1947U. The bar in the front is PES (Performance Enhancing Substance)! PES is made from 50:50 Plainsman A1 and St. Rose Red, it behaves like a red fireclay. BMix has some specks anyway, so why not concentrate them into some awesome aesthetics? The addition does not affect the working properties of BMix. Well, actually it does. Pieces dry better. Fired strength and maturity are minimally affected (porosity increases from about 1% to about 1.3%). With 20% addition the surface of the unglazed clay is almost metallic. Silky matte glazes are stunning on a body like this.

This glaze creates the opaque-with-clear effect shown (at cone 7R) because it has a highly fluid melt that thins it on contours. It is over fired. On purpose. That comes with consequences. Look at the recipe, it has no clay at all! Clay supplies Al2O3 to glaze melts, it stabilizes it against running off the ware (this glaze is sourcing some Al2O3 from the feldspar, but not enough). That is why 99% of studio glazes contain clay (both to suspend the slurry and stabilize the melt). Clay could likely be added to this to increase the Al2O3 enough so the blisters would be less likely (it would be at the cost of some aesthetics, but likely a compromise is possible). There is another solution: A drop-and-soak firing. See the link below to learn more. One more observation: Look how high the LOI is. Couple that with the high boron, which melts it early, and you have a fluid glaze melt resembling an Aero chocolate bar!

The boron and zinc fluxes make the melt of this glaze highly fluid at cone 7R. That comes with consequences. Notice the Al2O3 and SiO2 in the calculated chemistry. They are at cone 04 levels. The significant ZnO increases surface tension of the melt, this helps bubbles form at the surface (like soap in water). Al2O3 and SiO2 could be added (via more clay), this would stiffen the melt so the large bubbles would be less likely to form (this glaze melts so well that it could accept significantly more clay without loss in gloss). A drop-and-soak firing is another option, in this case a drop of more than 100C might be needed (see the link below to learn more).

The wax resist brushstrokes (done right after glazing) are clearly defined. This indicates that soda migration to the surface during drying is an important mechanism of the effect. Some carbon trapping is also visible on the lower section of the large bowl (and other pieces in other places in the kiln). The glaze has been applied fairly thinly so no whiter areas are visible.

The color is developing despite the fact that very little iron is available from the body. I have glazed the inside of this mug with a durable liner glaze to make it functional. The porcelain contains more than 30% silica but the Shino is still crazing on it.

Left is Plainsman Zero3 stoneware fired at cone 03. Middle is Polar Ice fired at cone 6d. Right is Plainsman P600 fired at cone 10R. The same black and blue underglazes are used on all three, but each has its own transparent glaze (left G2931F, middle G3806C, right G1947U).

This is a low temperature slip-cast vase. Only the outside of the vessel is glazed. It burst apart like this on its own after firing.

This porcelain becomes quite brittle as it gets stiffer making it difficult to make these cuts in the foot ring. This creates extra sponging work when it is dry. It also means that dry strength will be low. Porcelains do not need to be this way, plenty of white burning bentonites are available (although they increase cost).

The top porcelain bar has only 0.07% Mason 6336 blue stain added (vs. none in the bottom bar). This is a low fire frit-ware body fired at cone 03 in oxidation. At a slightly lower percentage (e.g. 0.05%) this porcelain will have the same color as a cone 10 reduction one (when covered with a transparent glaze). However adequate glass development is needed before the blue color develops.

On the left is G2931J, a zinc alkali fluxed and high Si:Al ratio glaze. Those look like micro-bubbles but they are much more likely to be micro-crystals. High-zinc and high-silica is the mechanism for crystalline glazes, so it appears that is what they are. G2931K on the right has much more boron, double the Al2O3, less SiO2 and is magnesia-alkali instead of zinc-alkali. It is the product of dozens of tests to find an ultra-clear having a glassy smooth surface. This particular chemistry, although having only a 6:1 SiO2:Al2O3 ratio is ultra-gloss. In addition is has low expansion, will fast fire and the boron is not high enough to compromise the hardness.

It seems impossible but that is what happens with this one at cone 03. This is a native material that was found on the banks of the South Saskatchewan river near Hayes, Alberta (and brought to me for testing). Even when fired to maturity (around cone 2) it still has 10% porosity! This specific sample has even been ball milled for hours and it still does not shrink. And it still feels sandy on the potters wheel. It also has incredible dry strength, the highest I have ever seen. Yet its drying shrinkage is still less than 7% (that of a typical plastic pottery clay). Plus it has very high plasticity. This behavior defies logic, I have found a good explanation.

This is an all-fritted version of G2931F Zero3 transparent glaze. I formulated this glaze by calculating what mix of frits must be employed to supply the same chemistry of the G2931F recipe. The mug is made from the Zero3 porcelain body (fired at cone 03) with this glaze. This glaze fits both the porcelain and the Zero3 terra cotta stoneware. The clarity, gloss, fit and durability of this glaze are outstanding.

I melted these two 9 gram balls on tiles to compare their melting (the chemistry of these is identical, the recipes are different). The Ulexite in the G2931F (left) drives the LOI to more than 14%. That means the while the ulexite is decomposing during melting it is creating gases that are creating bubbles in the glass. Notice the size of the F is greater (because it is full of bubbles). While this seems like a serious problem, in practice the F fires crystal-clear on most ware.

All of the equipment has been washed in preparation for a porcelain run. This mixer feeds a set of hoppers on the other side of the wall, they in turn feed the pugmill.

The machine is being cleaned in preparation for a porcelain run. The machine has been stripped down completely and all the casings and augers and other parts have been washed and dried separately. These must be installed (in the main chamber, the vacuum chamber and in the nose). Clean-downs like this are an indicator of the quality delivered by the production crew.

These two glazes have the same chemistry but different recipes. The F gets its boron from Ulexite, and Ulexite has a high LOI (it generates gases during firing, notice that these gases have affected the downward flow during melting). The frit-based version on the right flows cleanly and contains almost no bubbles. At high and medium temperatures potters seldom have bubble issues with glazes. This is not because they do not occur, it is because the appearance of typical glaze types are not affected by bubbles (and infact are often enhanced by them). But at low temperatures potters usually want to achieve good clarity in transparents and brilliance in a colors, so they find themselves in the same territory as the ceramic industry. An important way to do this is by using more frits (and the right firing schedules).

This flow test compares the base and base-plus-iron version of a popular CM recipe called "Tenmoku Cone 6" (20% whiting, 35% Custer feldspar, 15% Ball Clay and 30% silica, 10% iron oxide). Although iron is not a flux in oxidation, it appears to be doing exactly that here (that flow is just bubbling its way down the runway, the white one also fires to a glassy surface on ware). It looks melted in the tray on the right but notice how easily it is scratching on the tile (lower left). This demonstrates that looks can be deceiving. Cone 6 functional glazes always have some percentage of a power flux (like boron, lithia, zinc), otherwise they just do not melt into a hard glass. Maybe a glaze looks melted, but it has poor durability.

The outer green glaze on these cone 6 porcelain mugs has a high melt fluidity. The liner glaze on the lower one, G2926B, is high gloss but not highly melt fluid. Notice that it forms a fairly crisp boundary with the outer glaze at the lip of the mug. The upper liner is G3806C, a fluid melt high gloss clear. The outer and inner glazes bleed together completely forming a very fuzzy boundary.

Calcined kaolin has zero plasticity. 25% bentonite had to be added to make it plastic enough to make this piece. Why bother? Because this will flash heavily in reduction firing.

Color, density, size and hardness all change as the firing temperature progresses. The color, for example, persists in zones, then changes suddenly. Notice that the colour of the grog particles contrasts more as the temperature increases. This body is completely vitrified at cone 10 and the grog is important for fired stability.

Notice how much the color changes as the clay fires to greater maturity. This is Plainsman FireRed.

Terra cotta bodies are more volatile, maturing more rapidly over a narrower range than others. These bars are fired (bottom to top) at cone 06, 04, 03, 02, 2 and 4. This is Plainsman BGP.

The outer glaze is Ravenscrag GR6-E Raspberry, the bright maroon color is a product of the surprising interaction between the 0.5% chrome oxide and 7.5% tin oxide present. That small amount of chrome is only enough to give the raw powder a slight greenish hue, hardly different than the clear liner. While this color mechanism appears to be effective, it is delicate. A maroon stain is actually a better choice. It would fire more consistent would be less hazardous to use. And the raw glaze will be the same color as the fired one!

These fritted porcelain bars are fired at cone 06, 04, 03 and 02 oxidation (bottom to top). The body contains 0.2% blue stain. Notice that almost no color develops at the lowest temperature. Glass development is needed.

This recipe melts to such a fluid glass because of its high sodium and lithium content coupled with low silica levels. Reactive glazes like this produce interesting visuals but these come at a cost that is more than just the difficulty in firing. Recipes like this often calculate to an extremely high thermal expansion. That means that not only will this form a lake in the bottom of ware when used on the inside, but the food surfaces will craze badly. The low silica will also contribute to leaching of the lithium and any colorants present.

These are thermal expansion curves for body, engobe and glaze (from a dilatometer, a device that measures it against increasing temperature). The upper line is the body. The center line is the engobe. The lower line is the glaze. The ceramic tile industry is very conscious, not only of glaze-fit but also engobe-fit. Engobes (slips) are employed to cover brown or red burning bodies so they glaze like a porcelain. Typically technicians tune the formulation of the engobe to have an expansion between the body and glaze. The body is highest so that during cooling, as it contracts, it puts a squeeze on the engobe (the engobe thus never finds itself under tension). The glaze has the lowest expansion, it is under a state of compression by the engobe (and slightly more by the body). This equilibrium enables the tile to wear for many years without crazing or shivering. Chart courtesy of Mohamed Abdelmagid.

Notice how ware is set on pads of clay to enable the salt vapours to access the underside. Salt and soda kilns degrade over time as the sodium eats away at the interior bricks. Shelves must be covered in kiln wash to preserve them.

Talc is employed in low fire bodies to raise their thermal expansion (to put the squeeze on glazes to prevent crazing). These dilatometer curves make it very clear just how effective that strategy is! The talc body was fired at cone 04, the stoneware at cone 6. The former is porous and completely non-vitreous, the latter is semi vitreous.

This book is in Italian (unfortunately none of the world's tile producing countries speak alot of English). Yet the tile industry is the largest single market segment in ceramics and the largest user of materials and energy. The tile industry is at the cutting edge of inkjet, engobe, specialty glaze and firing technology. They are also experts at dust pressing. This book can be found at http://www.tiledizioni.it.

Many aspects of ceramic production relate to the control of fluids (mostly suspensions). This is also true of material production. If you want to solve problems and optimize your process this is invaluable knowledge. This book is available at amazon.com.

The height down to which the cone melts is measured and recorded. Courtesy of Ashok Srivastava.

It seems logical (and convenient) to just say that the kiln does not care what materials source the oxides in a glaze melt. Li2O, CaO, Al2O3, SiO2 are oxides (there are about ten common ones). The kiln just melts everything and constructs the glaze from the ones available. Right? Wrong! Things get more complicated when frits are introduced. Frits are man-made glasses, they melt much more readily than raw materials like feldspar. Raw materials are often crystalline. Crystals put up a fuss when asked to melt, often holding on as long as they can and then suddenly melting. Frits soften over a range and they start melting early. To illustrate: These two glazes have the same chemistry. But the one on the left sources sodium and alumina (Na2O3, Al2O3) from the 48% feldspar present. The other sources these from a frit (only 30% is needed for the same amount of Na2O3). The remainder of the recipe has been juggled to match the other oxides. The frit version is crystallizing on cooling (further testament to how fluid the melt is). What has happened here is great. Why? First, the chemistry has not changed (fewer firing differences). The frit has no Al2O3, it is being sourced from kaolin instead, now the slurry does not settle like a rock. Even better, silica can be added until the melt flow matches (might be up to 20%). That will drop the thermal expansion and reduce crazing. The added SiO2 will add resistance leaching and add durability. Frits are great! But you need to know how to incorporate them into a recipe using a little glaze chemistry.

The original cone 6 recipe, WCB, fires to a beautiful brilliant deep blue green (shown in column 2 of this Insight-live screen-shot). But it is crazing and settling badly in the bucket. The crazing is because of high KNaO (potassium and sodium from the high feldspar). The settling is because there is almost no clay. Adjustment 1 (column 3) eliminates the feldspar and sources Al2O3 from kaolin and KNaO from Frit 3110. The chemistry of the new chemistry is very close. To make that happen the amounts of other materials had to be juggled (you can click on any material to see what oxides it contributes). But the fired test reveals that this one, although very similar, is melting more (because the frit releases its oxide more readily than feldspar). Adjustment 2 (column 4) proposes a 10-part silica addition (to supply more SiO2). SiO2 is the glass former, the more a glaze will accept, the better. Silica is refractory so the glaze will run less. It will also fire more durable and be more resistant to leaching.

Some frit companies publish the chemistry of their frits, others do not. Some publish some of their products. Some published in the past but do not do so now. When frit data sheets do not provide an oxide analysis they become an impediment to use in glaze chemistry.

Insight-live is calculating the unity formula and mole% formula for the two glazes. Notice how different the formula and mole% are for each (the former compares relative numbers of molecules, the latter their weights). The predominant oxides are very different. The calculation is accurate because all materials in the recipe are linked (clickable to view to the right). Notice the Si:Al Ratio: The matte is much lower. Notice the calculated thermal expansion: The matte is much lower because of its high levels of MgO (low expansion) and low levels of KNaO (high expansion). Notice the LOI: The matte is much higher because it contains significant dolomite.

The glaze on the right is a transparent, G2926B, on a dark burning cone 6 body (Plainsman M390). On the left is the same glaze, but with 4% red iron oxide added. The entrained micro bubbles are gone and the color is deep and much richer. It is not clear how this happens, but it is certainly beneficial.

It may not melt, but will certainly warp and blister/bloat. If there is inadequate kiln wash it will stick to the kiln shelf.

This thrown vessel has sat on this plaster bat for almost 24 hours and yet still has not released. The bat was dry. It had to be slowly pried off with a flat scraper (which deformed it somewhat). When clay bodies are high in ball clay and bentonite they dry slower. If this is taken to an extreme, it can slow down production.

Well, actually they are not exactly the same. This is 80% Alberta Slip and 20% frit. But the frit on the left is Ferro 3195 and on the right is 3134. By comparing the calculated chemistry for these two we can say that the likely reason for the difference is the Al2O3 content. Frit 3134 has almost none whereas 3195 has 12%. Al2O3 stiffens the glaze melt, that impedes crystal growth. But it stabilizes the melt against running during firing. Frit 3195 has more boron, so the one on the left should be running more. But it actually runs less. Why? Again, because the increased Al2O3 is stiffening the melt.

The handle on this mug joined the wall at an acute angle. The wet engobe was applied to the leather-hard piece and took hours to dry (rewetting and softening the whole piece in the process). During that time the engobe was able to exploit the join and penetrate into it (the crack diverted straight into the soft weakened wall). Notice how the engobe has pooled at the join in the other two mugs also (although they did not fail). Engobes typically have a high water content and experiences like this teach us to take precautions when using them.

These two cone 6 mugs have the same glaze recipe: GA6A Alberta Slip base. 4% rutile has been added to each. They were fired in the same kiln using a slow cool schedule. The recipes and chemistry are shown below (the latter gives a clue as to why there is no blue on the right). The mug on the left is the traditional recipe, 80:20 Alberta Slip:Ferro Frit 3134. Frit 3134 melts at a very low temperature and a key reason for that is its near-zero Al2O3 content. Al2O3 in glazes stiffens the melt and imparts durability to the fired glass (normally we want adequate levels in functional glazes). When Al2O3 levels are low and cooling is slower molecules in the stiffening glass have much more freedom to move and orient themselves in the preferred way: crystalline (fast cooling produces a glass). Thus the rutile in the glaze on the left has had its way, dancing as the kiln cooled, producing all sorts of interesting variegated visual effects. The glaze on the right employs Ferro Frit 3195. It has lots of Al2O3 and has contributed enough to stop the rutile dead.

This is a white engobe (L3954B) drying on two dark burning cone 6 stoneware leather-hard mugs (Plainsman M390). Those lumps are on the left cannot be screened out, they are agglomerates. That slip has excessive flocculant (Epsom salts are added to gel the slurry so that it stays put on the piece after dipping). About 4 drops of Darvan were added to one gallon of the slurry, this immediately transformed the slurry, making it smooth and a perfect consistency for application. It remains stable on ware (without runs). Engobes require tight control to have the right specific gravity, viscosity and thixotropy. When they are right they are a joy to use, when they are not your ware is ruined.

Left is Plainsman M340. Right is M390. Each mug has been white engobed inside and half-way down the outside. The insides have been glazed using G2926B clear. The inside surface has more depth and has a richer appearance than you could achieve using a white glaze (especially over the dark burning body). The outside of the left one is Alberta Slip base GA6A using Frit 3249 (it produces a more stable glass of lower thermal expansion). The outside glaze on the right is the clear plus 4% iron oxide. This technique of using the engobe enables porcelain-like functional surfaces on the insides and striking visual contrast and character on the outside of the dark body mug.

These are mostly native Plainsman stoneware bodies. The glazes are mostly pure Alberta Slip and pure Ravenscrag Slip (or Ravenscrag with a small talc addition to produce a silky matte). Ware was made by Tony Hansen in June 2017.

On the right is what it will look like when fired with a clear glaze on the inside and amber-clear on the outside. On the left it has dried and is ready for a little fix-up before bisque firing.

Fired to cone 10R. The porcelain contains bentonite and a plastic kaolin, both are contributing iron-stained solubles that come to the surface during drying. They tend to concentrate on this foot ring. The solution is to employ a little barium carbonate in the porcelain recipe to precipitate the salts. These could also be sponged or sanded off in the dry state.

It was put into the kiln before it was dry (from glazing). The kiln was fired fairly fast. These glazes have significant boron, they melt early and seal the surface. But water vapor can remain until surprisingly high temperatures. And it needs to get out. So it finds a discontinuity in the glaze cover and vents and bubbles out there. That leaves these defects that even a drop-and-soak and slow-cooling did not heal.

Rutile blue glazes are difficult, blistering and pinholing are very common. You must get it right on the first firing or pinholes and blisters will often invade on the second. The melt fluidity increases, it runs and creates thicker sections in which the bubbles just percolate and just do not heal well during cooling (even if it is slow). When finishing leather hard or dried ware do not disturb thrown surfaces any more than necessary. Make sure that ware is dry before the glaze firing. Do not put the glaze on too thick. Limit the melt fluidity (so it does not pool too thickly in any section). Do not fire too high.

This glaze has just been applied to a bisqued tile. It contains wollastonite, which can agglomerate in storage. The white wollastonite lumps can be broken down by sieving the slurry through 80 mesh or finer. Many other materials behave in a similar manner (e.g. barium carbonate, iron oxide, cobalt oxide, clays, tin oxide, zircon).

Boxes are 20kg (22.68 lbs). Plus there are enough trimmings to make about two more. That is about 500g of pugged clay per mug. These have been trimmed and engobed (using our standard cone 6 engobe) and are drying. Notice I have waxed the outers of some of the handles to slow their drying down (to keep it in sync with the mug itself). M390 is likely the most plastic native Plainsman body. Although it was not overly soft I stiffened up the clay for ten minutes on a plaster bat to make it my ideal throwing stiffness.

The foot ring on these hard mugs has already been trimmed. At the stiff-leather-hard stage an engobe was applied to the inside. This rewet the bodies of the mugs, almost to the same point as freshly-thrown. But the handles did not get rewetted. To re-dry these mugs to the point of being able to turn them over will take 4-6 more hours. But by that time the handles will be bone dry. To prevent that I waxed them after trimming. That slows their drying down enough to keep them even with the body of the mug. To dry ware successfully the key is to keep all parts of a piece of the same water content throughout the process.

At the top is a melt-flow ball of a cone 6 satin matte glaze, G2934. Left bottom: 8% 6213 Mason Hemlock Green stain has been added. The percentge appears to be sufficient, but it is not melting as much and the surface is more matte. A solution is too employ a 90:10 or 80:20 matte:glossy glaze blend as the base. Right bottom: 8% 6385 Mason Pansy Purple stain added. The percentage of stain appears to be a little low and its surface is a little too matte.

Left: Plainsman M390. Right M370 porcelain. The bottom two samples are a popular ultra clear commercial bottled glaze that costs about $13/pint. On the porcelain, it is crazing. On the red clay it is saturating with micro-bubbles and going totally cloudy and even a satin surface (it should be like the transparent above it). It is likely very high in boron and melting too early. Whose fault is this? No ones. This glaze is simply not compatible with these two bodies.

These are cone 6 Alberta Slip recipes that have been brushed onto the outsides of these mugs (three coats). Recipes are GA6C Rutile Blue on the outside of the left mug, GA6F Alberta Slip Oatmeal on the outside of the center mug, GA6F Oatmeal over G2926B black on the outside of the right mug). One-pint jars were made using 500g of powder, 75g of Laguna CMC gum solution and 280g of water (a good mixer is needed). This produces a specific gravity of 1.6 and a glaze consistency the same as commercial bottled glazes. The presence of the gum made it unnecessary to calcine the Alberta Slip.

This is how bad the fit can actually be. In the front is a bi-clay strip of a grogged cone 10R sculpture clay sandwiched with a porcelain. After drying this bar was relatively straight. But during firing the porcelain has a much higher fired shrinkage and it pulls the bar toward itself. During cooling, the sculpture clay has a higher thermal expansion and it pushes from its side bending the bar further. This bar is a bomb of internal stresses, just waiting for a mechanical or thermal stress to bust it into a hundred pieces. Admittedly, putting a thin layer of this onto a piece of heavy ware is not going to bend it. But will it flake off when exposed to stresses (like freeze thaw, being put in an oven, having a hot liquid poured into it, being bumped).

This cone 6 mug is made from a black clay (containing 10% burnt umber). The engobe on the inside is covered by a clear glaze. The color is the same as if the engobe were on a white or buff firing stoneware. Engobes get their covering power from the fact that they do not melt. If you see an engobe with lots of frit it will likely melt too much, be suspicious.

Augers like these force the clay into the nose of the pugmill for extrusion. The one on the left was originally the same size as the one on the right. But the wear of grog particles in the clay have worn it down. Particles of quartz also take their toll on pugmills.

Clay is soft, but when under pressure in the nose and shredder feeders the abrasive particles within it (grog and quartz) take their toll.

This is from half a box! 21 mugs from 10 kg ( (all scrap was reclaimed). Polar Ice porcelain double the price of others. Why use it? Because it is so plastic that you can make more pieces, many more, enough to more than pay the extra clay cost. And you can charge more for each piece. These have a weight-to-capacity ratio of 1.09. That means the mug itself is lighter than the weight of water it can hold (each 1 gram of fired porcelain can contain 1.09 grams of water). This is much better than most other clay bodies.

This is happening on five different stains at 8% concentrations. The body: A fritted porcelain. Temperature: Cone 03. The glaze: 85% frit. The solution? Documentation for inclusion frits notes that adding 2-3% zircon can brighten the color. Although this does not seem intuitive, we added 2% anyway and refired another sample. You can see the dramatic difference on that tile below. The color is brighter because the micro-bubble clouds that were diffusing it are gone! Of course, it is apparent that the percentage of stain also needs to be increased to get more intense color. What happened to the bubbles? It could be that the particles of zircon that float, unmelted in the glaze melt, act as seed-points for bubble agglomeration and the bigger bubbles then break the surface and it heals behind them. But where do the bubbles come from? I do not know.

These are fired at cone 6. The glaze is a transparent with a pink stain (15%). The thickness is close to the same. The glaze is very sensitive to the presence of iron oxide in the stoneware, it is muddying the color.

This is about 1/2 gallon of glaze with 150 grams of yellow stain ready to mix in. That stain retails for about $30 so its cost alone is about $60 for each gallon (in 2017).

This is G2934Y (a version of the G2934 cone 6 matte base recipe that supplies much of the MgO from a frit instead of dolomite). Like the original, it has a beautiful fine silky matte surface and feels like it would not cutlery mark. But, as you can see on the left, it does! The marks can be cleaned off easily. But still, this is not ideal. By blending this with G2926B clear glossy (90:10 proportions) the marks are gone and the surface is only slightly changed.

On Zero3 porcelain. Between 10 and 15% stain with 2-3% zircon added (to prevent bubbling). The firing schedule approached cone 03 (1950F) at 100F/hr for the final 100 degrees, held for 5 minutes, dropped to 1800 and held for 30 minutes.

These two pieces are fired at cone 6. The base transparent glaze is the same (G2926B Plainsman transparent). The amount of encapsulated red stain is the same (11% Mason 6021 Dark Red). But two things are different. Number 1: 2% zircon has been added to the upper glaze. The stain manufacturers recommend this, saying that it makes for brighter color. However that is not what we see here. What we do see is the particles of unmelting zircon are acting as seed and collection points for the bubbles (the larger ones produced are escaping). Number 2: The firing schedule. The top one has been fired to approach cone 6 and 100F/hr, held for five minutes at 2200F (cone 6 as verified in our kiln by cones), dropped quickly to 2100F and held for 30 minutes.

This cone 6 porcelain bowl has a black engobe inside and half way down the outside. This inside glaze is a transparent (G2926B) but the outside is that same transparent with 11% added encapsulated red stain. Notice that the glaze is so opaque that you cannot see where the black engobe ends and the while porcelain body begins!

This is G2926B clear cone 6 glaze deflocculated with Darvan. Because the Darvan is thinning it, 2.5kg of powder is suspended in only 1100 grams of water (half the normal amount). While the slurry in the bucket flows well and appears like it should work, a one-second dip produces twice the desired thickness. It dries slowly and it is very difficult to prevent runs. The lesson: Make sure the specific gravity (SG) of your glazes is right. What should the SG be? Measure it when your glaze is working well. Or take note of it in instructions that come with the recipes you use. For bisque ware: 1.43-1.45 with a flocculant (like Vinegar or Epsom Salts) added to gel the slurry slightly.

The amber glaze on the outside of the left mug contains 20% super-low thermal expansion Ferro Frit 3249 as the melter. With no underlying engobe it can form enough of a bond with the body that it does not flake off at the rim (even though it is under excessive compression because its low thermal expansion). This flaking is called "shivering". The engobe, which does not melt like a glaze, has a more fragile bond with the body (and the glaze is pushing enough to make that bond fail). The mug on the right employs 20% Frit 3195 melter instead, producing a glaze that fits better. I hammered both of these rims repeatedly with a metal object to stress them, that one on the right definitely fits better.

These balls are easily broken down by the propeller in a slurry mixer. But they do not break down easily in a dry mixer, even when in a mix with other materials (like silica and feldspar). They just bounce around on a vibrating screen. That means that without some sort of finishing device in the dry material feed stream to break down these lumps before the pugmill, it is difficult to manufacture homogeneous plastic body employing it.

This is a cone 6 transparent base glaze. It contains frit, silica, kaolin, wollastonite. Almost all glazes have materials that are slightly soluble and over time these can form scale on the sides of the bucket or even precipitate particles into the slurry. The defects here are those scales. Before dipping a production piece in any glaze that has been in storage it is a good idea to assess it first to see if it needs to be sieved.

Glazes need to be gelled, have thixotropy. That means these things won't bob up and down to find the right place. The one on the right is completely useless, the scale is too wide. Most glazes need to be between 1.4 and 1.5 specific gravity (40-50 on this scale). That is like reading seconds on the hour-hand of a clock. And it is too long, when are you going to have enough glaze to float that? And the small one? It has a scale of 1.2 to 1.45. But it is a real bobber, it needs a fluid that gives it the ability to move. That will never be the case with a glaze. It is much better to weigh a measured volume of glaze slurry and calculate the SG instead. The easiest is a 100cc graduated cylinder, if 100 ccs weighs 140 grams, that is 1.4 specific gravity.

Why? Glaze fit. These are available on Aliexpress (as Drip Pottery) and they are made by a manufacturer that has a dilatometer to precisely match the thermal expansion of the glaze with the body. The inside glaze has to fit better than normal because of the absence of an outside glaze. Too low of a thermal expansion and it's compression (outward pressure) will fracture body (especially if the latter is thin). Too high a thermal expansion and it will craze. And that thick glaze? It will shiver or craze with far less forgiveness than a thin layer. And there is one more problem: How to get the glaze on thick enough to flow like this. The answer is two-fold: Deflocculate it, take the specific gravity up to 1.7 or more. Glaze the inside, let it dry, then glaze the outside.



Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved