Al2O3 | B2O3 | BaO | C | CaO | CO2 | CoO | Cr2O3 | Cu2O | CuO | Fe2O3 | FeO | H2O | K2O | Li2O | LOI | MgO | MnO | MnO2 | Na2O | NiO | O | Organics | P2O5 | PbO | SiO2 | SnO2 | SO3 | SO4 | SrO | TiO2 | V2O5 | ZnO | ZrO | ZrO2


Ag2O | AlF3 | As2O3 | As4O6 | Au2O3 | BaF2 | BeO | Bi2O3 | CaF2 | CdO | CeO2 | Cl | CO | CrO3 | Cs2O | CuCO3 | Dy2O3 | Er2O3 | Eu2O3 | F | Fr2O | Free SiO2 | Ga2O3 | GdO3 | GeO2 | HfO2 | HgO | Ho2O3 | In2O3 | IrO2 | KF | KNaO | La2O3 | Lu2O3 | Mn2O3 | MoO3 | N2O5 | NaF | Nb2O5 | Nd2O3 | Ni2O3 | OsO2 | Pa2O5 | PbF2 | PdO | PmO3 | PO4 | Pr2O3 | PrO2 | PtO2 | RaO | Rb2O | Re2O7 | RhO3 | RuO2 | Sb2O3 | Sb2O5 | Sc2O3 | Se | SeO2 | Sm2O3 | Ta2O5 | Tb2O3 | Tc2O7 | ThO2 | Tl2O | Tm2O3 | U3O8 | UO2 | WO3 | Y2O3 | Yb2O3

•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at
•The place to get the knowledge is

Sign-up at today.

NiO (Nickel Oxide)

GSPT - Frit Softening Point 1957C (From The Oxide Handbook)


Most often used to modify and soften the color of other metallic oxides and thus small amounts are normally employed.

It is not normally used in low fire glazes due to the refractory nature of nickel oxide powder. Glazes that are already matte or immature will thus be made more dry by the addition of nickel.

Since nickel is used in smaller amounts, flashing from other glazed ware and the chemistry of the glaze can have an effect on ware color.


Ceramic Oxide Periodic Table

Ceramic Oxide Periodic Table

All common traditional ceramic base glazes are made from only a dozen elements (plus oxygen). Materials decompose when glazes melt, sourcing these elements in oxide form. The kiln builds the glaze from these, it does not care what material sources what oxide (assuming, of course, that all materials do melt or dissolve completely into the melt to release those oxides). Each of these oxides contributes specific properties to the glass. So, you can look at a formula and make a good prediction of the properties of the fired glaze. And know what specific oxide to increase or decrease to move a property in a given direction (e.g. melting behavior, hardness, durability, thermal expansion, color, gloss, crystallization). And know about how they interact (affecting each other). This is powerful. And it is simpler than looking at glazes as recipes of hundreds of different materials (each sources multiple oxides so adjusting it affects multiple properties).

Out Bound Links

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015, All Rights Reserved