Al2O3 | B2O3 | BaO | C | CaO | CO2 | CoO | Cr2O3 | Cu2O | CuO | Fe2O3 | FeO | H2O | K2O | Li2O | LOI | MgO | MnO | MnO2 | Na2O | NiO | O | Organics | P2O5 | PbO | SiO2 | SnO2 | SO3 | SO4 | SrO | TiO2 | V2O5 | ZnO | ZrO | ZrO2


Ag2O | AlF3 | As2O3 | As4O6 | Au2O3 | BaF2 | BeO | Bi2O3 | CaF2 | CdO | CeO2 | Cl | CO | CrO3 | Cs2O | CuCO3 | Dy2O3 | Er2O3 | Eu2O3 | F | Fr2O | Free SiO2 | Ga2O3 | GdO3 | GeO2 | HfO2 | HgO | Ho2O3 | In2O3 | IrO2 | KF | KNaO | La2O3 | Lu2O3 | Mn2O3 | MoO3 | N2O5 | NaF | Nb2O5 | Nd2O3 | Ni2O3 | OsO2 | Pa2O5 | PbF2 | PdO | PmO3 | PO4 | Pr2O3 | PrO2 | PtO2 | RaO | Rb2O | Re2O7 | RhO3 | RuO2 | Sb2O3 | Sb2O5 | Sc2O3 | Se | SeO2 | Sm2O3 | Ta2O5 | Tb2O3 | Tc2O7 | ThO2 | Tl2O | Tm2O3 | U3O8 | UO2 | WO3 | Y2O3 | Yb2O3

•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at
•The place to get the knowledge is

Sign-up at today.

CuO (Cupric Oxide)

GSPT - Frit Softening Point 1336C (From The Oxide Handbook)


-Copper can be produced from many different raw materials, the main being black tenorite (CuO), deep red cuprite (Cu2O), bright green malachite (CuCO3.Cu(OH)2), and bright blue azurite (2CuCO3.Cu(OH)2).

-Under normal oxidizing conditions the CuO molecule remains unchanged and produces clear green colors in oxidation glazes. The shade of copper greens can vary with firing rate and soaking changes. The best colors are generally obtained with fast firing and little soaking. CaO is unlikely to affect the color of copper in a glaze.

-Copper is well-known for its ability to produce blood-red and fire-red colors in reduction atmosphere firings where it is altered to Cu2O (see Cu2O). Purple copper reduction glazes are the result of a mixture of copper in its green oxidized and red reduced forms. This effect appears most frequently in high lime glazes or where early stages of firing are oxidizing or latter stages are light or neutral.

-Copper is a strong flux and even 2% can considerably increase the melt fluidity of a glaze.
-Generally additions of copper to a glaze will reduce its thermal expansion. That means that the base clear might craze, yet the version with significant copper added will not.

-Crystalline glazes can be attractive when done with copper.

-Copper and titanium can produce beautiful blotching and specking effects.

-Pure copper metal filings can make an extremely potent specking material (and contaminant, depending on your viewpoint) in reduction firing for both bodies and glazes.

-Leaching: When added to low lead solubility glazes copper can cause the solubility of the lead to be greatly increased. Copper is well known for this effect in glazes at other temperatures also. Do a leaching test to be sure.

-In the enameling industry, copper is used in combination with small quantities of cobalt, manganese, or nickel in making black where the black is produced in the smelter.


Copper oxide (2%) added to an otherwise stable cone 6 glaze fluxes it considerably

The same copper red glaze on the inside and outside of a vase

The same copper red glaze on the inside and outside of a vase

The Copper Red effect shows the importance of correct firing to achieve a specific effect with certain glaze recipes. The inside of this vase was more heavily and consistently reduced, simply because it was isolated somewhat from the outside kiln atmosphere. The outside of the vase, by contrast, is grey (a product of periods of oxidation during the firing).

How do metal oxides compare in their degrees of melting?

How do metal oxides compare in their degrees of melting?

Metallic oxides with 50% Ferro frit 3134 in crucibles at cone 6ox. Chrome and rutile have not melted, copper and cobalt are extremely active melters. Cobalt and copper have crystallized during cooling, manganese has formed an iridescent glass.

Copper can destabilize a glaze and make it soluble

Copper can destabilize a glaze and make it soluble

A closeup of a glossy Cone 6 glaze having 4% added copper carbonate. The bottom section has leached in lemon juice after 24 hours. This photo has been adjusted to spread the color gamut to highlight the difference. The leached section is now matte.

Copper carbonate powder

Copper carbonate powder

Ceramic Oxide Periodic Table

Ceramic Oxide Periodic Table

All common traditional ceramic base glazes are made from only a dozen elements (plus oxygen). Materials decompose when glazes melt, sourcing these elements in oxide form. The kiln builds the glaze from these, it does not care what material sources what oxide (assuming, of course, that all materials do melt or dissolve completely into the melt to release those oxides). Each of these oxides contributes specific properties to the glass. So, you can look at a formula and make a good prediction of the properties of the fired glaze. And know what specific oxide to increase or decrease to move a property in a given direction (e.g. melting behavior, hardness, durability, thermal expansion, color, gloss, crystallization). And know about how they interact (affecting each other). This is powerful. And it is simpler than looking at glazes as recipes of hundreds of different materials (each sources multiple oxides so adjusting it affects multiple properties).

Does copper cause glazes to leach?

Does copper cause glazes to leach?

These are four cone 6 glazes of diverse chemistry. They have varying melt fluidities. They are soaked (half way up) in lemon juice over night. None show any evidence of surface changes. All contain 2% copper carbonate. If the copper was increased, especially to the point of going metallic or crystallizing, likely the leaching test would have different results. So, if you use copper sensibly (in moderate amounts), there is a good chance you can make a glaze that resists leaching.

Out Bound Links

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015, All Rights Reserved