Ceramic Oxides

•The secret to cool bodies and glazes is alot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

B2O3 (Boric Oxide)

COLE - Co-efficient of Linear Expansion 0.031


-B2O3 is a low melting glass of low thermal expansion and surface tension. It is an extremely useful oxide, indispensable in many industries and applications. With B2O3 in a glaze you can make it melt at almost any temperature you want, and get a brilliant finish that will not craze (provided percentages of high expansion oxides are not excessive).

-Below cone 10, additions of B2O3 are almost always needed to make glazes melt well. Other fluxes, like ZnO, will melt glazes at cone 6, but many issues limit them to only certain types of glazes. The lower you go the more boron is needed. A melt fluidity checker is the best way to determine if the glaze is melting enough (and not too much). At cone 06, 0.5 molar parts of B2O3 are usually needed, whereas at cone 6, only around 0.1 to 0.2 are required. Reactive glazes often contain much more boron (e.g. 0.4-0.5 at cone 6), these formulations have issues with running and contributes to various defects. Almost all frits for low and medium temperatures contain boron as their melting mechanism.

-You cannot add powdered B2O3 to a glaze, there is no such insoluble material. It must be done using glaze chemistry. There are many videos showing how this can be done using your account at Insight-live.com and with Digitalfire Insight. Check the link provided here to my youtube channel.

-Boric oxide itself has no melting point, but a progressive softening and melting range from 300-700C. The crystals begin to break down at 300C, and a series of suboxides are produced with partial melting until full fusion is reached at 700C. Boron frits behave in exactly this manner.

-Boric oxide is a unique oxide often not fully appreciated for all its qualities. It reacts with whatever is available to behave as both the 'bones' and the 'blood' of glazes (acidic glass former and flux). In some ways, it can thus be considered a low temperature equivalent of silica (although silica still needs to be present for boron to act as a flux, see below). Because of its dual personality, technicians often are not sure where to place it in the unity formula. If placed with the amphoterics, where chemically it should go, it becomes difficult to compare the formula to others that have no boric oxide.

-Boron has many advantages as a glass-forming oxide. Borosilicate glazes have been the major alternative to lead based formulations (melting as low as 750C), and thus boron is critical to the ceramic industry. 'Pyrex' ware, for example, is a low expansion, high silica, borosilicate glass.

-The way in which boric oxide combines with oxides like calcia and soda is not as well understood as other systems.

-Its low expansion makes it valuable in preventing crazing. However, each glaze recipe tends to have an optimum amount above which the effect is can be reversed and crazing increase (typically 10-14%). This effect is due to the loss of elasticity associated with excess B2O3. Predicting the expansion of high boron glazes can thus be misleading due to this factor.

-Like silica, it does not crystallize on cooling unless significant calcia is present to form calcium borate.

-Boron glazes have less melt fluidity and this has been the major challenge in switching from lead. While many users increased firing temperatures to compensate, this has not fully solved the 'healing' and bubble clearance problems.

-In the sanitaryware industry boron is being used to impart better refire characteristics (where significant reject rates necessitate fix-up and refire). Small amounts (2% from frits) in previously boron-free glazes produce a glaze that does not devitrify, and therefore lose gloss, on second and subsequent firings (see linked article below). In addition, the small boron addition imparts better acid resistance and hardness, lower melting temperature and reduced thermal expansion.

-In low temperature glazes, it both substitutes for fluxes of higher-expansion and less potency, and contributes to glass building in lieu of the lower SiO2 percentages present.

-Boron's reactivity helps to form better clay-glaze interfacial zones.

-The action of B2O3 depends upon the ratio of bases to silica existing in the glaze before the addition. If the ratio is greater than 1:2, the glaze will tend toward opalescence and crazing; if less toward clear and transparent.

-Boron can form both borosilicate and borosilite alkali glasses in the same melt. These tend to separate in what is called 'phase separation'. Glasses solidified from such a non-homogeneous melt can have thermal expansion properties, for example, that are much lower or higher than expected. Frits very high in boron demonstrate this phenomenon.

-Boron can form a strong eutectic with BaO and it is possible to produce glossy and runny glazes that can solidify below 500C.

-Boron is very important in glass manufacture. It is employed to obtain the low expansion and quick heat transfer necessary for hot-cold cycle endurance. It also imparts corrosion resistance and lower temperature workability (at the expense of working range). Small amounts in ordinary soda-lime glass (1-1.5%) give greater strength, brilliance, durability, thermal shock resistance and protect against the tendency to crystallize during the cool cycle. Adding boric oxide for silica reduces melting temperature, substituting it for soda improves thermal properties and durability.

-Borax and Boracic Acid are both soluble and unsuitable sources for glazes, but fine for frits.

-B2O3 can actually be a refractory, frits with very high contents are used in the refractory industry. These frits do not contain SiO2 (depriving boron of a reaction with it to form a borosilicate glass).


The fluxing power of boron (in borax): The two top clay bars contain 15% hydrous borax. At cone 06 it has melted and drained out of the bars, running down over the others as a glass.

Melting range is mainly about boron content

Fired at 1850. Notice that Frit 3195 is melting earlier. By 1950F, they appear much more similar. Melting earlier can be a disadvantage, it means that gases still escaping as materials in the body and glaze decompose get trapped in the glass matrix. But if the glaze melts later, these have more time to burn away. Glazes that have a lower B2O3 content will melt later, frit 3195 has 23% while Frit 3124 only has 14%).

A frit softens over a wide temperature range

This is unlike some raw materials which melt suddenly.

Frits melt so much better than raw materials

Feldspar and talc are both flux sources (glaze melters). But the fluxes (Na2O and MgO) within these materials need the right mix of other oxides with which to interact to vitrify or melt a mix. The feldspar does source other oxides for the Na2O to interact with, but lacks other fluxes and the proportions are not right, it is only beginning to soften at cone 6. The soda frit is already very active at cone 06! As high as cone 6, talc (the best source of MgO) shows no signs of melting activity at all. But a high MgO frit is melting beautifully at cone 06. While the frits are melting primarily because of the boron content, the Na2O and MgO have become active participants in the melting of a low temperature glass. In addition, the oxides exist in a glass matrix that is much easier to melt than the crystal matrix of the raw materials.

Do you know the purpose of these common Ferro frits?

I used a binder to form 10 gram balls and fired them at cone 08 (1700F). Frits melt really well, they do not gas and they have chemistries we cannot get from raw materials (similar ones to these are sold by other manufacturers). These contain boron (B2O3), it is magic, a low expansion super-melter. Frit 3124 (glossy) and 3195 (silky matte) are balanced-chemistry bases (just add 10-15% kaolin for a cone 04 glaze, or more silica+kaolin to go higher). Consider Frit 3110 a man-made low-Al2O3 super feldspar. Its high-sodium makes it high thermal expansion. It works in bodies and is great to incorporate into glazes that shiver. The high-MgO Frit 3249 has a very-low expansion, it is great for crazing glazes. Frit 3134 is similar to 3124 but without Al2O3. Use it where the glaze does not need more Al2O3 (e.g. it already has enough clay). It is no accident that these are used by potters in North America, they complement each other well. The Gerstley Borate is a natural source of boron (with issues frits do not have).

Boron blue in low fire transparent glazes

This high boron cone 04 glaze is generating calcium-borate crystals during cool down (called boron-blue). This is a common problem and a reason to control the boron levels in transparent glazes; use just enough to melt it well. If a more melt fluidity is needed, decrease the percentage of CaO. For opaque glazes, this effect can actually enable the use of less opacifier.

Improving a clear by substituting frit for Gerstley Borate

Melt fluidity test showing Perkins Studio clear recipe original (left) and a reformulated version that sources the boron from Ferro Frit 3134 instead of Gerstley Borate (right). The later is less amber in color (indicating less iron) and it melts to very close to the same degree.

These two frits have one difference in the chemistry. AL2O3.

These two boron frits (Ferro 3124 left, 3134 right) have almost the same chemistry. But there is one difference: The one on the right has no Al2O3, the one on the left has 10%. Alumina plays an important role (as an oxide that builds the glass) in stiffening the melt, giving it body and lowering its thermal expansion, you can see that in the way these flow when melting at 1800F. The frit on the right is invaluable where the glaze needs clay to suspend it (because the clay can supply the Al2O3). The frit on the left is better when the glaze already has plenty of clay, so it supplies the Al2O3. Of course, you need to be able to do the chemistry to figure out how to substitute these for each other because it involves changing the silica and kaolin amounts in the recipe also.

Why does Gerstley Borate melt in two stages? Because it is two minerals.

The ulexite in Gerstley Borate melts first, producing an opaque fired glass having the unmelted (and still gassing) particles of colemanite suspended in it. By 1750F the colemanite is almost melted also. Boron-containing frits, by contrast, begin softening at a much lower temperature and gradually spread and melt gradually. Not surprisingly they produce a more stable glaze (albeit often less interesting visually).

Your boron glaze might melt alot earlier than you think

The porcelain mug on the left is fired to cone 6 with G2926B clear glossy glaze. This recipe only contains 25% boron frit (0.33 molar of B2O3). Yet the mug on the right (the same clay and glaze) is only fired to cone 02 yet the glaze is already well melted! What does this mean? Industry avoids high boron glazes (they consider 0.33 high boron) because this early melting behavior means gases cannot clear before the glaze starts to melt (causing surface defects). For this reason, fast fire glazes melt much later. Yet many middle temperature reactive glazes in use by potters have double the amount of B2O3 that this glaze has!

Does adding boron alone always increase glaze melt?

Boron (B2O3) is like silica, but it is also a flux. Frits and Gerstley Borate supply it to glazes. In this test, I increased the amount of boron from 0.33 to 0.40 (using the chemistry tools in my insight-live.com account). I was sure that this would make the glaze melt more and have less of a tendency to craze. But as these melt flow tests (10 gram balls melted on porcelain tiles) show, that did not happen. Why? I am guessing that to get the effect B2O3 has to be substituted, molecule for molecule for SiO2 (not just added to the glaze).

Ceramic Oxide Periodic Table in SVG Format

The periodic table of common ceramic oxides in scalable vector format (SVG). Try scaling this thumbnail: It will be crystal-clear no matter how large you zoom it. All common pottery base glazes are made from only 11 elements (the grey boxes) plus oxygen. Materials decompose when glazes melt, sourcing these elements in oxide form; the kiln builds the glaze from these. The kiln does not care what material sources what oxide (unless the glaze is not melting completely). Each of these oxides contributes specific properties to the glass, so you can look at a formula and make a very good prediction of how it will fire. This is actually simpler than looking at glazes as recipes of hundreds of different materials.

Look at recipes before wasting time and money on them.

Are they serious? This is a cone 6 melt flow comparison between a matte recipe, found online at a respected website, and a well-fluxed glossy glaze we use often. Yes, it is matte. But why? Because it is not melted! Matte glazes used on functional surfaces need to melt well, they should flow like a glossy glaze. How does that happen? This recipe has 40% nepheline syenite. Plus lots of dolomite and calcium carbonate. These are powerful fluxes, but at cone 10, not cone 6! To melt a cone 6 glaze boron, zinc or lithia are needed. Boron is by far the most common and best general purpose melter for potters (it comes in frits and gerstley borate, colemanite or ulexite; industry uses more boron, zinc and lithia frits). The lesson: Look at recipes before trying them.

Al2O3 in glazes make them durable and wear resistant

The cone 6 glazes on the left have double the boron of those on the right so they should be melting much more. But they flow less because they have much higher Al2O3 and SiO2 contents. This effect renders them milky white vs. the transparent of those on the right. Why? Because G and H are trapping micro-bubbles because of the increased viscosity of the melt. In spite of this, the two on the left do fire almost transparent when applied to ware, they have enough fluidity to shed most of the bubbles when in a thin layer. The ones on the right are too fluid, they will run excessively on ware unless applied thinly. The sweet-spot is a little more fluidity than those on the left. But there is another very important factor: Durability. The increased Al2O3 in G and H make them fire harder, more resistant to abrasion. The added SiO2 adds resistance to leaching.

A super glassy ultra-clear brilliantly glossy cone 6 clear base glaze? Yes!

I am comparing 6 well known cone 6 fluid melt base glazes and have found some surprising things. The top row are 10 gram balls of each melted down onto a tile to demonstrate melt fluidity and bubble populations. Second, third, fourth rows show them on porcelain, buff, brown stonewares. The first column is a typical cone 6 boron-fluxed clear. The others add strontium, lithium and zinc or super-size the boron. They have more glassy smooth surfaces, less bubbles and would should give brilliant colors and reactive visual effects. The cost? They settle, crack, dust, gel, run during firing, craze or risk leaching. In the end I will pick one or two, fix the issues and provide instructions.

In pursuit of a reactive cone 6 base that I can live with

These melt-flow and ball-melt tests compare 6 unconventionally fluxed glazes with a traditional cone 6 moderately boron fluxed (+soda/calcia/magnesia) base (far left Plainsman G2926B). The objective is to achieve higher melt fluidity for a more brilliant surface and for more reactive response with colorant and variegator additions (with awareness of downsides of this). Classified by most active fluxes they are: G3814 - Moderate zinc, no boron G2938 - High-soda+lithia+strontium G3808 - High boron+soda (Gerstley Borate based) G3808A - 3808 chemistry sourced from frits G3813 - Boron+zinc+lithia G3806B - Soda+zinc+strontium+boron (mixed oxide effect) This series of tests was done to choose a recipe, that while more fluid, will have a minimum of the problems associated with such (e.g. crazing, blistering, excessive running, susceptibility to leaching). As a final step the recipe will be adjusted as needed. We eventually chose G3806B and further modified it to reduce the thermal expansion.

Slow cooling vs. fast cooling on a cone 6 transparent glaze

These are the inside uppers on two mugs made from the same clay with the same clear glaze. The one on the left was fired in a large electric kiln full of ware (thus it cooled relatively slowly). The one on the right was in a test kiln and was cooled rapidly. This glaze contains 40% Ferro Frit 3134 so there is plenty of boron and plenty of calica to grow the borosilicate crystals that cause the cloudiness in the glass. But in the faster cooling kiln they do not have time to grow.

Out Bound Links

In Bound Links

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://https://digitalfire.com, All Rights Reserved