Monthly Tech-Tip from Tony Hansen SignUp

No tracking! No ads!That's why this page loads quickly!

1-9 | A | B | C | D | E | F | Frits | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Lithium Carbonate

Alternate Names: Lith Carb, Li2CO3

Oxide Analysis Formula
Li2O 40.74% 1.00
Oxide Weight 29.80
Formula Weight 73.15


Lithium Carbonate is the best source of lithium oxide for glazes. It is slightly soluble. It is unusual to see more than 5% lithium carbonate in glaze. Because of the low expansion of Li2O, high lithium glazes tend to shiver.

There are certain basic properties of lithium which are of interest in ceramics. Since lithium has a very small ionic radius in comparison to the other alkali metals, it has a higher field strength. Low expansion coefficients are generally imparted to ceramic compositions containing lithia. Lithium carbonate is a very strong flux (also true of lithium fluoride). In contrast, other lithium compounds may be quite refractory: lithium zirconate and lithium aluminum spinel are examples.

There is comparatively little published information on the use of lithia compounds in ceramics. Laboratory investigations indicate that small additions of lithium will react with quartz during firing and eliminate the alpha-beta quartz transition in the cooling cycle. Lithia imparts low thermal expansion coefficients to glasses and also promotes devitrification in glass systems. Smaller amounts act to smooth the glass surface.

Lithium exhibits many properties that are similar to the more common alkali metals sodium and potassium. In many respects is also shows similarities to the elements of the alkaline earth group, especially magnesium.

In addition to being soluble, lithium carbonate produces gases as it decomposes and these can cause pinholes or blisters in glazes. There are insoluble lithium frits available (e.g. Fusion F-493 has 11%) and incorporating one of them to source the Li2O instead is a classic application of glaze chemistry calculations (however for glazes with very high amounts of lithium, like 10%+, it will be difficult to source the Li2O using a frit because significant amounts will be required and this will likely oversupply the other oxides the frit brings). The resultant glaze will be more fusible and will have better clarity and fewer defects.

Related Information

Original container of Albemarle Lithium Carbonate

Original container of Rockwood Lithium Carbonate

Sourcing Li2O from spodumene instead of lithium carbonate

Lithium carbonate is now incredibly expensive. The glaze on the left employs it. But I was able to source the Li2O from spodumene instead. Spodumene has a complex chemistry, but the oxides that it contains (other than Li2O) are those common to glazes anyway. Using my account at, I did the calculations and got a pretty good match in the formulas (lower section in the green boxes). Then I made 10 gram balls and did a melt flow test at 2200F (notice the long crystals in the pools of glass below the runways). And I glazed buff stoneware test (below the flow tests). Not surprisingly, this glaze is very runny. That's why the tiny yellow crystals grow during cooling, they produce the gold effect this recipe is known for. The spodumene version is very similar, perhaps better. Notice my calculated cost: $15.47/kg vs. $8.12/kg.

Frits instead of raw zinc, lithium, barium, strontium

These materials have many issues. They can create problems in your glaze slurries (like precipitates, higher drying shrinkage), cause issues with laydown and dried surface and cause fired surface defects (like pinholes, blisters, orange peeling, crystallization). And lithium and barium have toxicity issues (as raw materials). And the lithium, barium and strontium are carbonates, that means carbon burns off during firing (with lithium, for example, 60% of its weight is lost). Yet the oxides that these materials source to the glaze melt, ZnO, Li2O, BaO and SrO can be sourced from frits. In doing that you can solve almost all the problems and get better glaze melting. Fusion Frit F 493 has 11% LI2O, F 403 has 35% BaO, F 581 has 39% SrO and FZ 16 has 15% ZnO. Of course, these frits source other oxides (but these are common in most glazes). Using glaze chemistry you can often duplicate the chemistry of a glaze while sourcing these oxides from frits.

Lithium carbonate precipitation in one gallon of glaze

This is one of the issues with using the material. These have to be screened out from time to time, if not they produce defects in fired ware. Better to employ a lithium frit to source Li2O.

Crystals found growing in a glaze containing lithium carbonate

Crystals found growing in a glaze containing 7% lithium carbonate, 7% titanium dioxide and 6% cadycal. Also had wollastonite, silica, koalin and nepheline syenite. Courtesy of Mark Rossier Pottery.

Alberta Slip using in the common lithium-tin cone 6 glaze

This is 85% Alberta Slip, 11% lithium and 4% tin fired at cone 6 in oxidation. Like the original Albany version, it has a very low thermal expansion (because of the high lithium content) and likes to shiver on many bodies.

Lithium and tin do this to an otherwise transparent dull brown Alberta Slip glaze

10% lithium carbonate and 4% tin.


Materials Fusion Frit F-493
Materials Spodumene
Materials Lithium Carbonate (Foote)
Hazards Lithium Carbonate Toxicity
Hazards Lithium Toxicology
Typecodes Generic Material
Generic materials are those with no brand name. Normally they are theoretical, the chemistry portrays what a specimen would be if it had no contamination. Generic materials are helpful in educational situations where students need to study material theory (later they graduate to dealing with real world materials). They are also helpful where the chemistry of an actual material is not known. Often the accuracy of calculations is sufficient using generic materials.
Typecodes Flux Source
Materials that source Na2O, K2O, Li2O, CaO, MgO and other fluxes but are not feldspars or frits. Remember that materials can be flux sources but also perform many other roles. For example, talc is a flux in high temperature glazes, but a matting agent in low temperatures ones. It can also be a flux, a filler and an expansion increaser in bodies.
Lithium Carbonate at
Oxides Li2O - Lithium Oxide, Lithia


Solubility1.3 g/100ml at 20 deg C

By Tony Hansen

Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address




CAPTCHA, All Rights Reserved
Privacy Policy