1-9 | A | B | C | D | E | F | Frits | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z

Lincoln 60 Fireclay

Oxide Analysis Formula
K2O 0.75% 0.02
Al2O3 32.50% 1.00
SiO2 52.00% 2.72
Fe2O3 2.20% 0.04
MgO 0.60% 0.05
CaO 0.20% 0.01
Na2O 0.30% 0.02
LOI11.20%
Oxide Weight 277.91
Formula Weight 312.96

Notes

It was first used in the late 1800s by Gladding McBean to make sewer pipe, subsequently for a wide range of architectural purposes. It is also used as a major ingredient in many commercial west coast USA stoneware and middle and high fire pottery clay and sculpture bodies. This material is very smooth and has a unique feel that many potters can recognize with their eyes closed!

Although this material is known as a fireclay, it completely vitrifies by cone 10 (where it is near zero porosity). it's porosity decreases steadily from cone 6 to 10, but it is beginning to bloat at cone 11. However, the fired shrinkage increases until cone 8 after which it bars begin to expand (indicating over firing).

Lincoln clay has several other very unusual properties also:
-It has excellent drying properties (resistance to cracking) even though it has high plasticity. It's drying shrinkage is below 6%.
-It is very plastic like a ball clay yet it feels like a kaolin (it is not sticky as are other clays of the same plasticity).
-27% water is required to make the Lincoln clay plastic enough to work for pottery (whereas a typical plastic pottery clay body is 20-22%). Yet it still has a fairly low during shrinkage! This is very unusual.

Variation in the physical and fired properties of this material have been a concern with its use in pottery. Its sieve analysis also varies considerably by batch.

This unique combination of firing behavior and workability made this an ideal material for making vitrified unglazed sewer pipe. Those same properties make it possible to create a pottery body having a very high percentage of this material (90% is feasible). However it is customary to dilute it into a recipe of other clays, many or all of which are more refractory. For this reason recipes will often contain feldspar (which would not be needed if using pure Lincoln fireclay as a body).

The ZAM stoneware pottery clay body has been made for many years by various manufacturers on the west coast. It is:

15 Hawthorn fireclay
10 Lincoln fireclay
40 Goldart
15 Ball clay
10 Silica
7 Feldspar
3 Redart
8 Grog or Sand

Another example is Soldner's Raku which is:
50 Lincoln fire clay
30 sand, all mesh
20 talc

Imco 400 Fireclay is similar to this material.

Related Information

A fireclay that is not really a fireclay!

This is a Lincoln 60 fireclay drying disk (that has been fired to cone 10R). It has near zero-porosity and is dense and very strong. It is like a stoneware clay, quite vitreous.

Is Lincoln 60 really a fireclay? Simple physical testing says...

Materials are not always what their name suggests. These are Lincoln Fireclay test bars fired from cone 6-11 oxidation and 10 reduction (top). The clay vitrifies progressively from cone 7 upward (3% porosity at cone 7 to 0.1% by cone 10 oxidation and reduction, bloating by cone 11). Is it a really fireclay? No.

Links

Materials Lincoln 8 Clay
Materials Imco 400 Fireclay
Materials Fireclay
Suppliers Lincoln Clay
Typecodes Clay Other
Clays that are not kaolins, ball clays or bentonites. For example, stoneware clays are mixtures of all of the above plus quartz, feldspar, mica and other minerals. There are also many clays that have high plasticity like bentonite but are much different mineralogically.
Typecodes Fireclay
Fireclays are non-kaolin non-ball clay materials similar to stoneware clays but lacking fluxing oxides. Many fireclays have a PCE of 28 or more.
URLs http://www.ceramicindustry.com/Articles/Feature_Article/f5877442bbac7010VgnVCM100000f932a8c0____
ZAM clay body recipe

Data

Drying Shrinkage5.5-6.0% @ 27% water
Firing ShrinkageCone 6: 7.5% Cone 7: 8.0% Cone 8: 8.5% Cone 10: 8.0%
Pyrometric Cone Equivalent31 (claimed)
Sieve Analysis Dry+35 mesh: 3.5 35-48: 3.0 48-65: 4.0 65-100: 3.5 100-150: 3.5 150-200: 4.0 200-325: 5.0
Water absorptionCone 6: 3.0% Cone 7: 2.5 Cone 8: 1.5 Cone 10: 0.2

By Tony Hansen


Tell Us How to Improve This Page

Or ask a question and we will alter this page to better answer it.

Email Address

Name

Subject

Message


Upload picture


Copyright 2008, 2015, 2017 https://digitalfire.com, All Rights Reserved