•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Ferro Frit 3195

Leadless High Borax/calcia for glaze

Alternate Names: F3195

OxideAnalysisFormula
CaO11.36%0.688
Na2O5.69%0.312
Al2O311.98%0.399
B2O322.62%1.104
SiO248.35%2.734
Oxide Weight339.82
Formula Weight339.82
If this formula is not unified correctly please contact us.
COLE - Co-efficient of Linear Expansion 7.16
MLRG - Frit Melting Range (C) 1500-1700F

This is a USA pottery frit. Ferro now calls it Frit 3195-2.
Like Frit 3124, this can be a complete cone 06-02 leadless glaze with the addition of a little kaolin to suspend. Adding more kaolin and silica will produce glazes suitable for higher temperatures. Substitute in some Frit 3110 if glazes shiver or 3249 if they craze.

If used in too high a percentage, this frit can push the boron too high for use in underglaze colors.

A chart from Ferro 1962 listed Na2O 10.3, B2O3 15.8.


Stoneware from your terra cotta body? Is is very possible.

Stoneware from your terra cotta body? Is is very possible.

Some terra cotta clays can be used to produce stoneware by firing them a few cones higher. Terra Cottas are almost always nowhere near vitrified at their traditional cone 04-06 temperatures, so they can often stand much higher firing. However, clear glazes do not usually work well in higher firing since products of decomposition from the vitrifying body fill them will microbubbles, clouding the surface. In addition, the body turns dark brown under clear glazes. But with a white glaze, these are not a problem. This is Plainsman L210 fired to cone 2. The glaze is 80% Frit 3195, 20% kaolin and 10-12% zircopax, it fires to a brilliant flawless surface.

Do you know the purpose of these common Ferro frits?

Do you know the purpose of these common Ferro frits?

I used a binder to form 10 gram balls and fired them at cone 08 (1700F). Frits melt really well, they do not gas and they have chemistries we cannot get from raw materials (similar ones to these are sold by other manufacturers). These contain boron (B2O3), it is magic, a low expansion super-melter. Frit 3124 (glossy) and 3195 (silky matte) are balanced-chemistry bases (just add 10-15% kaolin for a cone 04 glaze, or more silica+kaolin to go higher). Consider Frit 3110 a man-made low-Al2O3 super feldspar. Its high-sodium makes it high thermal expansion. It works in bodies and is great to incorporate into glazes that shiver. The high-MgO Frit 3249 (for the abrasives industry) has a very-low expansion, it is great for fixing crazing glazes. Frit 3134 is similar to 3124 but without Al2O3. Use it where the glaze does not need more Al2O3 (e.g. it already has enough clay). It is no accident that these are used by potters in North America, they complement each other well. The Gerstley Borate is a natural source of boron (with issues frits do not have).

Are frits partially soluble? Yes, many are.

Are frits partially soluble? Yes, many are.

These 1 mm-sized crystals were found precipitated in a couple of gallons of glaze containing 85% Ferro Frit 3195. They are hard and insoluble. Why and how to do they form? Many frits are slightly partially soluble and the degree to which they are are related to the length of time the glaze is in storage, the temperature, the electrolytes and solubles in the water and interactions with other material particles present. The solute then interacts with other materials particles to form insoluble species that crystallize and precipitate out as you see here. These crystals can be a wide range of shapes and size and come from leaded and unleaded frits.

Why is that transparent glaze firing cloudy? The balls test us.

Why is that transparent glaze firing cloudy? The balls test us.

G1916Q and J low fire ultra-clear glazes (contain Ferro Frit 3195, 3110 and EPK) fired across the range of 1650 to 2000F (these were 10 gram balls that melted and flattened as they fired). Notice how they soften over a wide range, starting below cone 010 (1700F)! At the early stages carbon material is still visible (even though the glaze has lost 2% of its weight to this point), it is likely the source of the micro-bubbles that completely opacify the matrix even at 1950F (cone 04). This is an 85% fritted glaze, yet it still has carbon; think of what a raw glaze might have! Of course, these specimens test a very thick layer, so the bubbles are expected. But they still can be an issue, even in a thin glaze layer on a piece of ware. So to get the most transparent possible result it is wise to fire tests to find the point where the glaze starts to soften (in this case 1450F), then soak the kiln just below that (on the way up) to fire away as much of the carbon as possible. Of course, the glaze must have a low enough surface tension to release the bubbles, that is a separate issue.

Five common frits fired at cone 03 (1950F)

Five common frits fired at cone 03 (1950F)

Five common North American Ferro Frits fired at 1850F on alumina tiles (each started as a 10 gram ball and flattened during the firing). At this temperature, the differences in the degree of melting are more evident that at 1950F. The degree of melting corresponds mainly to the percentage of B2O3 present. However Frit 3134 is the runaway leader because it contains no Al2O3 to stabilize the melt. Frit 3110 is an exception, it has low boron but very high sodium.

Melting range is mainly about boron content

Melting range is mainly about boron content

Fired at 1850. Notice that Frit 3195 is melting earlier. By 1950F, they appear much more similar. Melting earlier can be a disadvantage, it means that gases still escaping as materials in the body and glaze decompose get trapped in the glass matrix. But if the glaze melts later, these have more time to burn away. Glazes that have a lower B2O3 content will melt later, frit 3195 has 23% while Frit 3124 only has 14%).

Same glaze, same kiln, same clay: The right one crystallized. Why?

Same glaze, same kiln, same clay: The right one crystallized. Why?

Well, actually they are not exactly the same. This is 80% Alberta Slip and 20% frit. But the frit on the left is Ferro 3195 and on the right is 3134. By comparing the calculated chemistry for these two we can say that the likely reason for the difference is the Al2O3 content. Frit 3134 has almost none whereas 3195 has 12%. Al2O3 stiffens the glaze melt, that impedes crystal growth. But it stabilizes the melt against running during firing. Frit 3195 has more boron, so the one on the left should be running more. But it actually runs less. Why? Again, because the increased Al2O3 is stiffening the melt.

A Redart cone 03 body shines when it come to ease of glaze fit

A Redart cone 03 body shines when it come to ease of glaze fit

These bowls are fired at cone 03. They are made from 80 Redart, 20 Ball clay. The glazes are (left to right) G1916J (Frit 3195 85, EPK 15), G191Q (Frit 3195 65, Frit 3110 20, EPK 15) and G1916T (Frit 3195 65, Frit 3249 20, EPK 15). The latter is the most transparent and brilliant, even though that frit has high MgO. The center one has a higher expansion (because of the Frit 3110) and the right one a lower expansion (because of the Frit 3249). Yet all of them survived a 300F to icewater test without crazing. This is a testament to the utility of Redart at low temperatures. A white body done at the same time crazed the left two.

Out Bound Links

In Bound Links


By Tony Hansen

XML for Import into INSIGHT

<?xml version="1.0" encoding="UTF-8"?> <material name="Ferro Frit 3195" descrip="Leadless High Borax/calcia for glaze" searchkey="F3195" loi="0.00" casnumber="65997-18-4"> <oxides> <oxide symbol="CaO" name="Calcium Oxide, Calcia" status="" percent="11.360" tolerance=""/> <oxide symbol="Na2O" name="Sodium Oxide, Soda" status="" percent="5.690" tolerance=""/> <oxide symbol="Al2O3" name="Aluminum Oxide, Alumina" status="" percent="11.980" tolerance=""/> <oxide symbol="B2O3" name="Boric Oxide" status="" percent="22.620" tolerance=""/> <oxide symbol="SiO2" name="Silicon Dioxide, Silica" status="" percent="48.350" tolerance=""/> </oxides> </material>


Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved