•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Ferro Frit 3110

High alkali, low alumina and boron leadless high expansion frit

Alternate Names: F3110, Frit KFG 4110, Ferro Crystal Frit, Ferro Frit 3110-2

Oxide Weight261.11
Formula Weight261.11
If this formula is not unified correctly please contact us.
COLE - Co-efficient of Linear Expansion 10.08
MLRG - Frit Melting Range (C) 1400-1700F

This is a USA pottery frit, Ferro now calls it Frit 3110-2.
Soft sodium borosilicate frit for glazes. Often used in crystal glazes. It has a high thermal expansion, therefore useful for substitution into glazes that are shivering.

This frit can be very useful to reduce the feldspar content in glazes (since many high feldspar glazes have low clay content and therefore poor slurry suspension properties and dried hardness). The chemistry of this frit is similar to a feldspar (but with low alumina and CaO in addition to the alkali fluxes). That means if you can substitute this for at least part of the feldspar you can increase the kaolin (to supply the alumina) and thereby improve slurry properties. In addition you will be able to reduce the amount of troublesome calcium carbonate. Of course, you need to use ceramic chemistry to calculate how to do this, there are videos at digitalfire.com on how to do this.

It can be used with 3403 for bright and semi-matte wall tile glazes. This frit is also good for use as a body flux to substitute for feldspar, much lower vitrifying ranges are possible.

Cone Range: 08-8
Fusion temperature: 1400F
Flow temperature: 1700F
This frit has a very low melting point like 3124, 3134, 3185.
Formerly Frit 1078


Do you know the purpose of these common Ferro frits?

I used a binder to form 10 gram balls and fired them at cone 08 (1700F). Frits melt really well, they do not gas and they have chemistries we cannot get from raw materials (similar ones to these are sold by other manufacturers). These contain boron (B2O3), it is magic, a low expansion super-melter. Frit 3124 (glossy) and 3195 (silky matte) are balanced-chemistry bases (just add 10-15% kaolin for a cone 04 glaze, or more silica+kaolin to go higher). Consider Frit 3110 a man-made low-Al2O3 super feldspar. Its high-sodium makes it high thermal expansion. It works in bodies and is great to incorporate into glazes that shiver. The high-MgO Frit 3249 has a very-low expansion, it is great for crazing glazes. Frit 3134 is similar to 3124 but without Al2O3. Use it where the glaze does not need more Al2O3 (e.g. it already has enough clay). It is no accident that these are used by potters in North America, they complement each other well. The Gerstley Borate is a natural source of boron (with issues frits do not have).

Frits melt so much better than raw materials

Feldspar and talc are both flux sources (glaze melters). But the fluxes (Na2O and MgO) within these materials need the right mix of other oxides with which to interact to vitrify or melt a mix. The feldspar does source other oxides for the Na2O to interact with, but lacks other fluxes and the proportions are not right, it is only beginning to soften at cone 6. The soda frit is already very active at cone 06! As high as cone 6, talc (the best source of MgO) shows no signs of melting activity at all. But a high MgO frit is melting beautifully at cone 06. While the frits are melting primarily because of the boron content, the Na2O and MgO have become active participants in the melting of a low temperature glass. In addition, the oxides exist in a glass matrix that is much easier to melt than the crystal matrix of the raw materials.

Why is that transparent glaze firing cloudy?

G1916Q and J low fire ultra-clear glazes (contain Ferro Frit 3195, 3110 and EPK) fired across the range of 1650 to 2000F (these were 10 gram balls that melted and flattened as they fired). Notice how they soften over a wide range, starting below cone 010 (1700F)! At the early stages carbon material is still visible (even though the glaze has lost 2% of its weight to this point), it is likely the source of the micro-bubbles that completely opacify the matrix even at 1950F (cone 04). This is an 85% fritted glaze, yet it still has carbon; think of what a raw glaze might have! Of course, these specimens test a very thick layer, so the bubbles are expected. But they still can be an issue, even in a thin glaze layer on a piece of ware. So to get the most transparent possible result it is wise to fire tests to find the point where the glaze starts to soften (in this case 1450F), then soak the kiln just below that (on the way up) to fire away as much of the carbon as possible. Of course, the glaze must have a low enough surface tension to release the bubbles, that is a separate issue.

Five common frits fired at cone 03 (1950F)

Five common North American Ferro Frits fired at 1850F on alumina tiles (each started as a 10 gram ball and flattened during the firing). At this temperature, the differences in the degree of melting are more evident that at 1950F. The degree of melting corresponds mainly to the percentage of B2O3 present. However Frit 3134 is the runaway leader because it contains no Al2O3 to stabilize the melt. Frit 3110 is an exception, it has low boron but very high sodium.

A Redart cone 03 body shines when it come to ease of glaze fit

These bowls are fired at cone 03. They are made from 80 Redart, 20 Ball clay. The glazes are (left to right) G1916J (Frit 3195 85, EPK 15), G191Q (Frit 3195 65, Frit 3110 20, EPK 15) and G1916T (Frit 3195 65, Frit 3249 20, EPK 15). The latter is the most transparent and brilliant, even though that frit has high MgO. The center one has a higher expansion (because of the Frit 3110) and the right one a lower expansion (because of the Frit 3249). Yet all of them survived a 300F to icewater test without crazing. This is a testament to the utility of Redart at low temperatures. A white body done at the same time crazed the left two.

A settling, running glaze recipe gets a makeover

The original cone 6 recipe, WCB, fires to a beautiful brilliant deep blue green (shown in column 2 of this Insight-live screen-shot). But it is crazing and settling badly in the bucket. The crazing is because of high KNaO (potassium and sodium from the high feldspar). The settling is because there is almost no clay. Adjustment 1 (column 3) eliminates the feldspar and sources Al2O3 from kaolin and KNaO from Frit 3110. The chemistry of the new chemistry is very close. To make that happen the amounts of other materials had to be juggled (you can click on any material to see what oxides it contributes). But the fired test reveals that this one, although very similar, is melting more (because the frit releases its oxide more readily than feldspar). Adjustment 2 (column 4) proposes a 10-part silica addition (to supply more SiO2). SiO2 is the glass former, the more a glaze will accept, the better. Silica is refractory so the glaze will run less. It will also fire more durable and be more resistant to leaching.

Out Bound Links

In Bound Links

By Tony Hansen

XML for Import into INSIGHT

<?xml version="1.0" encoding="UTF-8"?> <material name="Ferro Frit 3110" descrip="High alkali, low alumina and boron leadless high expansion frit" searchkey="F3110, Frit KFG 4110, Ferro Crystal Frit, Ferro Frit 3110-2" loi="0.00" casnumber="65997-18-4"> <oxides> <oxide symbol="CaO" name="Calcium Oxide, Calcia" status="" percent="6.290" tolerance=""/> <oxide symbol="K2O" name="Potassium Oxide" status="" percent="2.360" tolerance=""/> <oxide symbol="Na2O" name="Sodium Oxide, Soda" status="" percent="15.240" tolerance=""/> <oxide symbol="Al2O3" name="Aluminum Oxide, Alumina" status="" percent="3.700" tolerance=""/> <oxide symbol="B2O3" name="Boric Oxide" status="" percent="2.640" tolerance=""/> <oxide symbol="SiO2" name="Silicon Dioxide, Silica" status="" percent="69.770" tolerance=""/> </oxides> </material>

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved