•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Dolomite

Double carbonate of magnesia/calcia

Formula: CaCO3.MgCO3 or CaMg(CO3)2
Alternate Names: Calcium Magnesium Carbonate, Raw Limestone

OxideAnalysisFormula
CaO30.49%0.500
MgO21.90%0.500
CO247.61
Oxide Weight48.20
Formula Weight92.00
If this formula is not unified correctly please contact us.

Dolomite as a ceramic material is a uniform calcium magnesium carbonate. In ceramic glazes it is used as a source of magnesia and calcia. Other than talc, dolomite is the principle source of MgO in high temperature raw glazes. 'Dolomite matte' stoneware glazes, for example, are highly prized for their pleasant 'silky' surface texture. Dolomite by itself is refractory, but when combined with the typical oxides in a glaze (especially boron) it readily enters the melt.

Commercial dolomites are not able to achieve the theoretical 54:46 calcium carbonate:magnesium carbonate ratio, they tend to have less magnesia. It is simple to do an LOI test by firing a specimen of powder in a thin bisqued bowl to confirm the consistency of dolomite shipments. The chemistry shown here is theoretical and many commercial materials approach this with much less than 1% of two or three other oxides (e.g. Al2O3, SiO2).

Dolomite is a carbonate (like whiting) in that it loses considerable weight during firing when it disassociates to form MgO, CaO and CO2, this process being complete by about 900C.

In many circumstances where a raw glaze employs both CaO and MgO, dolomite is an economic alternative to sourcing with a mix of calcium carbonate and talc. However care needs to be taken to obtain a consistent grade since dolomites tend to vary more in mineralogy and can contain iron contamination that can darken the fired glaze. Although calcium carbonate and dolomite are plentiful minerals and grinding plants are located through North America, finding a suitable ceramic grade dolomite that will be consistent and available long term is not as easy as it might seem.

Synthetic substitutes to source MgO and CaO (e.g. frits) are worth considering, especially if glazes are not high temperature. Frits have no loss on ignition (therefore do not generate glaze bubbles) and melt far earlier than mineral sources of MgO and CaO. Using glaze chemistry it is quite easy to adjust a recipe to source MgO from a frit instead of raw materials.


Mechanisms

Calcium carbonate and dolomite are refractory when used pure

Calcium carbonate and dolomite are refractory when used pure

Examples of calcium carbonate (top) and dolomite (both mixed with 25% bentonite to make them plastic enough to make a test bars). They are fired to cone 9. Both bars are porous and refractory, even powdery. However, put either of these in a mix with other ceramic minerals and they interact strongly to become fluxes.

2, 5, 10, 15% dolomite added to Ravenscrag Slip at cone 10R

2, 5, 10, 15% dolomite added to Ravenscrag Slip at cone 10R

This is a buff stoneware clay. Crystal development toward a dolomite matte begins at 15%. By Kat Valenzuela.

2, 5, 10, 15% dolomite added to Ravenscrag Slip at cone 10R

Dolomite Crystals

Variegation and phase separation with about 5% rutile

Variegation and phase separation with about 5% rutile

The glaze is a dolomite matte fired to cone 10R. High fire reduction is among the best processes to exploit the variegating magic of rutile.

How reduction firing can affect glaze color

How reduction firing can affect glaze color

An example of how the same dolomite cobalt blue glaze fires much darker in oxidation than reduction. But the surface character is the same. A different base glaze having the same colorant might fire much more similar. The percentage of colorant can also be a factor in how similar they will appear. The identity of the colorant is important, some are less prone to differences in kiln atmosphere. Color interactions are also a factor. The rule? There is none, it depends on the chemistry of the host glaze, which color and how much there is.

How reduction firing can affect glaze color

Talc exhibits unique powder characteristics, a product of the particle shape and particle surface characteristics. While most powders slide cleanly from this stainless steel scoop, talc powder leaves a film. Dolomite and calcium carbonate are similar.

The difference between dolomite and calcium carbonate in a glaze

The difference between dolomite and calcium carbonate in a glaze

These glaze cones are fired at cone 6 and have the same recipe: 20 Frit 3134, 21 EP Kaolin, 27 calcium carbonate, 32 silica. The difference: The one on the left uses dolomite instead of calcium carbonate. Notice how the MgO from the dolomite completely mattes the surface whereas the CaO from the calcium carbonate produces a brilliant gloss.

The Best Cone 10R Dolomite Matte base recipe

The Best Cone 10R Dolomite Matte base recipe

This is G2571A cone 10R dolomite matte glaze with added 1% cobalt oxide, 0.2% chrome oxide. The porcelain is Plainsman P700, the inside glaze is a Ravenscrag Slip clear. This recipe can be googled, it has been available for many years and was first formulated by Tony Hansen. This base is very resistant to crazing on most bodies and it does not cutlery mark or stain. It also has very good application properties.

Ravenscrag dolomite matte

Ravenscrag dolomite matte

GR10-J Ravenscrag dolomite matte base glaze at cone 10R on Plainsman H443 iron speckled clay. This recipe was created by starting with the popular G2571 base recipe (googleable) and calculating a mix of materials having the maximum possible Ravenscrag Slip percentage. The resultant glaze has the same excellent surface properties (resistance to staining and cutlery marking) but has even better application and working properties. It is a little more tan in color because of the iron content of Ravenscrag Slip (see ravenscrag.com).

LOI is not important? Think again!

LOI is not important? Think again!

This chart compares the gassing behavior of 6 materials (5 of which are very common in ceramic glazes) as they are fired from 500-1700F. It is a reminder that some late gassers overlap early melters. The LOI (loss on ignition) of these materials can affect your glazes (e.g. bubbles, blisters, pinholes, crawling). Notice that talc is not finished until after 1650F (many glazes have already begin melting by then).

Testing the new brand of dolomite

Testing the new brand of dolomite

Dolomite is a key material for glazes, especially mattes. When you are forced to adopt a new brand it needs to be tested. Here, three tests were done to compare the old long-time-use material (IMASCO Sirdar) with a new one (LHoist Dolowhite). The first flow test is a very high dolomite cone 6 recipe formulated for this purpose; the new material runs a little more. The second is G2934 cone 6 MgO matte with 5% black stain; the new material runs a little less here. The third test is the high dolomite glaze on a dark burning clay to see the translucency and compare the surface character. They are very close. It looks like it is going to be OK. Does your supplier test new materials when they are forced to switch suppliers?

When both mineralogy and chemistry are shown on a data sheet

When both mineralogy and chemistry are shown on a data sheet

Some material data sheets show both the oxide and mineralogical analyses. Dolomite, for example, is composed of calcium carbonate and magnesium carbonate minerals, these can be separated mechanically. Although this material participates in the glaze melt to source the MgO and CaO (which are oxides), it's mineralogy (the calcium and magnesium carbonates) specifically accounts for the unique way it decomposes and melts.

Out Bound Links

In Bound Links


By Tony Hansen

XML for Import into INSIGHT

<?xml version="1.0" encoding="UTF-8"?> <material name="Dolomite" descrip="Double carbonate of magnesia/calcia" searchkey="Calcium Magnesium Carbonate, Raw Limestone" loi="0.00" casnumber="69598-19-2"> <oxides> <oxide symbol="CaO" name="Calcium Oxide, Calcia" status="" percent="30.490" tolerance=""/> <oxide symbol="MgO" name="Magnesium Oxide, Magnesia" status="" percent="21.900" tolerance=""/> </oxides> <volatiles> <volatile symbol="CO2" name="Carbon Dioxide" percent="47.610" tolerance=""/> </volatiles> </material>


Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved