•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Calcined Alumina

Aluminum oxide

Formula: Al2O3
Alternate Names: Alumina Calcined, Calcnd Alum, Ground Alumina, Corundum

OxideAnalysisFormula
Al2O3100.00%1.000
Oxide Weight102.00
Formula Weight102.00
If this formula is not unified correctly please contact us.
DENS - Density (Specific Gravity) 3.75-3.90
XREF - Index of Refraction 1.765
HMOH - Hardness (Moh) 9.0
DNLP - Density, loose packed (lbs/cu fut) 0.7-1.0
GSPT - Frit Softening Point 2040C
SAMG - Surface Area (m2/gm) 0.5-25
BDGC - Bulk Density g/cc (Packed) 1.0-1.3

Calcined alumina is generally used in the manufacture of high-grade ceramic shapes, refractories and fused alumina abrasives. It can be compressed to produce a fired density of 3.8 or more. Amazingly, ceramic bodies containing 95% or more alumina are being employed to produce ceramic parts for a wide range industries (fired to 1400C or more). Fabrication methods and glazing vary according to application.

Alumina has a very high melting temperature (about 2000C) and alumina ceramics can maintain up to 90% of their strength above 1100C. They are thus employed in many refractory materials (i.e. Calcium Aluminate Cements have PCEs above cone 35) and used to make parts that must withstand high temperature.

Calcined (or alpha) alumina is made by calcining a source alumina powder at 1200-1300C to convert it to pure Al2O3. This is the densest and most stable crystalline form of alumina. It is insoluble in water but is soluble in hydrofluoric acid and potassium bisulfate. When nearly 100% of the material converts to the large hexagonal, elongated tablet shaped crystals associated with the alpha phase, the product is referred to as "Tabular Alumina". Unground calcined aluminas are typically 100-300 mesh, but much finer grades (often called "Ground Alumina") are produced by milling. Calcined aluminas are available in numerous grades based on the heat treatment applied, crystal size, soda content, and degree of thermal conversion to alpha phase. Soda content is a major factor in determining the final use (low soda materials are used for electronic applications, medium soda for electrical insulation and porcelains, high soda for glass, glaze, fiberglass and electrical porcelain).

Some exceptionally fine 'super ground' grades are available which can be made into casting slurries of very high specific gravity and which cast well with very low shrinkage (even though alumina powder is not a plastic material). Deflocculation can be achieved using a low pH (3.5-4.5) positive anion mechanism employing hydrochloric or nitric acid, a high pH (11-12) cation mechanism with alkali hydroxide salt additions, or with the addition of standard alkali polyelectrolyte dispersants. With the addition of organic binders, alumina bodies can be cast and pressed into a wide variety of shapes requiring heat and abrasion resistance. Alumina parts are then sintered to permit discrete crystals to react with each other to form larger ones. Coorstek AD-94 is an example of a very high alumina content body, they publish alot of physical data about the material.

Calcined alumina can be substituted for silica filler in porcelain bodies (325 mesh). It reduces shrinkage, increases thixotropy, provides strength in the kiln minimizing warping, benefits glaze fit, and adds fired strength. The book "Clay Bodies" by Robert Tichane has more information on this.

Although it might seem logical to calculate a chemically equivalent substitute of alumina and silica for part of the kaolin in a recipe (i.e. to reduce glaze shrinkage in high kaolin recipes) this will likely not work unless the alumina is ground to micron sizes (very expensive). This is because the high melting temperature of the raw alumina, it will simply act as a matting agent. Notwithstanding this, alumina is added to glazes in the tile industry to impart matteness and texture (depending on particle size). In addition, for glazes that have alot of melt fluidity, an addition of pure calcined alumina powder can stabilize the melt while maintaining most of the visual effect.

Unlike hydrated alumina, the calcined material has no loss in weight on firing. Thus it produces no gases of decomposition.

Fired alumina ceramic parts can be harder than tungsten carbide or zircon, two to four times as strong as electrical porcelain, and very resistant to abrasion. Alumina is thus used in grinding media, cutting tools, high temperature bearings, and a wide variety of mechanical parts. Compared to zircon it has a high thermal conductivity and a higher thermal expansion.

Alumina (preferably in the calcined form) can be used in clay bodies as an aggregate and filler in place of quartz. This can increase the firing range, decrease quartz inversion firing problems, and increase hardness and whiteness in the fired body. However, alumina is much more expensive.


Mechanisms

An alumina kiln shelf that has cracked during firing

An alumina kiln shelf that has cracked during firing

This is due to its inability to withstand thermal gradients across its width. Sintered alumina is refractory, but it is not thermal shock resistant. The vessel on it was being used to calcine clay. The inner part of the shelf was being protected from the rising heat because of this heavy, slow-to-rise vessel on top of it. The moment of the crack was so dramatic that, in spite of the weight on top of it, the shelf blew apart leaving 4 pieces with an inch-gap separating them.

2, 5, 10 and 15% alumina hydrate added to Ravenscrag Slip

2, 5, 10 and 15% alumina hydrate added to Ravenscrag Slip

Pure Ravenscrag Slip is glaze-like by itself (thus tolerating the alumina addition while still melting as a glaze). It was applied on a buff stoneware which was then fired at cone 10R (by Kat Valenzuela). This same test was done using equal additions of calcined alumina. The results demonstrated that the hydrated version much more readily decomposes to yield its Al2O3, as an oxide, to the glaze melt. By 15% it is matting and producing a silky surface. However crazing also starts at 10%. The more Al2O3 added the lower the glaze expansion should be, so why is this happening? It appears that the disassociation is not complete, some of the raw material remains to impose its high expansion.

2, 5, 10 and 15% calcined alumina added to Ravenscrag Slip

2, 5, 10 and 15% calcined alumina added to Ravenscrag Slip

The Ravenscag:Alumina mix was applied to a buff stoneware fired at cone 10R (by Kat Valenzuela). Matting begins at only 5% producing a very dry surface by 15%. The matte is simply a product of the refractory nature of the alumina as a material, it does not disassociate in the melt to yield its Al2O3 as an oxide (as would a feldspar, frit or clay). The same test using alumina hydrate demonstrates that it disassociates better (although not completely).

An alumina mini proof-of-concept home-made kiln shelf (5 mm thick)

An alumina mini proof-of-concept home-made kiln shelf (5 mm thick)

It is made from 96.5% calcined alumina and 3.5% Veegum (to provide plasticity for forming). At cone 6, with no prior firing to a higher temperature, a 5mm thick slice can support a mug like this, demonstrating how refractory alumina is. You can make larger shelves, big enough for small electric kilns, however, since you likely do not have a furnace to fire these as high as they should be fired to sinter them properly (for hot strength), remember to support larger spans in the center to prevent sagging. Also note that alumina does not have nearly the thermal shock resistance that cordierite has (which, by the way, you can also make yourself if you can fire to 1350C).

Making your own hexagonal shelves from alumina

Making your own hexagonal shelves from alumina

The home-made kiln shelf (left) was fired it at cone 10. It is half the weight (and thickness) of the cordierite one (but remember that it does not have the thermal shock resistance of cordierite). It is made from a body consisting of 96.25% calcined alumina and 3.75% Veegum. It rolls out nicely and dries perfectly flat over about three days. But the Veegum does not give up its water easily. I cut it 1/4" larger than the other and it has fired to the same size; this body has incredibly low shrinkage.

Substituting alumina in a clay body dramatically lowers thermal expansion

Substituting alumina in a clay body dramatically lowers thermal expansion

These are glazed test bars of two fritted white clay bodies fired at cone 03. The difference: The one on the right contains 13% 200 mesh quartz, the one on the left substitutes that for 13% 200 mesh calcined alumina. Quartz has the highest thermal expansion of any traditional ceramic material, alumina has the lowest. As a result the alumina body does not "squeeze" the glaze (put it under some compression). The result is crazing. There is one other big difference: The silica body has 3% porosity at cone 03, the alumina one has 10%!

Making your own crucibles

Making your own crucibles

I mixed a cone 6 porcelain body and a cone 6 clear glaze 50:50 and added 10% Mason 6666 black stain. The material was plastic enough to slurry, dewater and wedge like a clay, so I dried a slab and broke it up into small pieces. I then melted them at cone 6 in a zircopax crucible (I make these by mixing alumina or zircopax with veegum and throwing them on the wheel). Because this black material does not completely melt it is easy to break the crucible away from it. As you can see no zircon sticks to the black. I then break this up with a special flat metal crusher we made, size them on sieves and add them to glazes for artificial speckle. As it turned out, this mix produced specks that fused too much, so a lower percentage of glaze is needed. I can thus fine tune the recipe and particle size to theoretically duplicate the appearance of reduction speckle.

Original Container Bag of Calcined Alumina

Original Container Bag of Calcined Alumina

Out Bound Links

In Bound Links


By Tony Hansen

XML for Import into INSIGHT

<?xml version="1.0" encoding="UTF-8"?> <material name="Calcined Alumina" descrip="Aluminum oxide" searchkey="Alumina Calcined, Calcnd Alum, Ground Alumina, Corundum" loi="0.00" casnumber="1302-74-5"> <oxides> <oxide symbol="Al2O3" name="Aluminum Oxide, Alumina" status="" percent="100.000" tolerance=""/> </oxides> </material>


Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved