•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Porosity


In ceramic testing this term generally refers to the pore space within a fired clay body. It is measured by weighing a specimen, boiling it in water, weighing it again, and calculating the increase in weight (thus it is also known by the term absorption). As ceramic clay bodies vitrify in a kiln they densify and shrink (thus reducing pore space). The % porosity of a body is thus an indicator of its degree of vitrification. Porosity also implies strength (in comparison to specimens fired at different temperatures that have greater or lesser porosities). Porcelains normally can be fired to a point where no porosity can be measured (termed zero-porosity). Typically, continuing to fire higher brings ware closer to melting and therefore much more likely to warp out of shape. Stonewares and earthenwares having coarser particles in the body usually reach a minimum porosity that can be well above zero (as much as 3%), firing beyond that bloats or melts the body. It is thus important to fire your clay body across a range of temperatures below and above what you work at to get a complete picture of its density as it relates to firing temperature. Developing an efficient way to make, fire, measure, boil and weigh test bars is a key to being able to do this. You can use an account at insight-live.com to learn how to do this and log and report your results.

When porosities are measured over a range of temperatures for a body it is possible to create a graph to get a visual representation of the body's maturing range. The porosities plotted against temperature produce a line that decreases to a minimum, levels out then typically rises quickly. Some bodies have a fairly broad temperature range at which porosity remains zero, for others it is quite narrow.

Cone 2: Where we see the real difference between terra cottas and white bodies

Cone 2: Where we see the real difference between terra cottas and white bodies

The terra cotta (red earthenware) body on the upper left is melting, it is way past zero porosity, past vitrified. The red one below it and third one down on the right have 1% porosity (like a stoneware), they are still fairly stable at cone 2. The two at the bottom have higher iron contents and are also 1% porosity. By contrast the buff and white bodies have 10%+ porosities. Terra cotta bodies do not just have high iron content to fire them red, they also have high flux content (e.g. sodium and potassium bearing minerals) that vitrifies them at low temperatures. White burning bodies are white because they are more pure (not only lacking the iron but also the fluxes). The upper right? Barnard slip. It has really high iron but has less fluxes than the terra cottas (having about 3% porosity).

One small pinhole in a terra cotta mug and we have a problem

One small pinhole in a terra cotta mug and we have a problem

This is L3724E terra cotta stoneware. The inside slip is L3685S, a frit-fluxed engobe that is hard like the body and attaches well to it (engobes are often insufficiently fluxed). The glaze (G1916Q) is Frit 3195, Frit 3110 and 15% ball clay. The body has about 3% porosity, enough to make very strong pots. However that porosity is still enough to absorb water (and coffee). Although not too visible here, the pinhole in the inner surface has enabled absorption and there is a quarter-sized area of discoloration below the glaze. The piece could possibly be fired a cone higher, but testing would be required to see if the slip is still firing-shrinkage and thermal-expansion compatible with the body and that the body would not be over-fired. A better solution is adjust the firing curve to heal the glaze better. High temperature stoneware can easily have a 3% porosity also, so this is not just a low fire issue.

Some iron clays bloat before reaching zero porosity, others do not

Some iron clays bloat before reaching zero porosity, others do not

A very fine particled low fire red burning terra cotta clay (Plainsman Redearth) fired at cone 2,3 and 4 (top to bottom). Notice the cone 4 bar is beginning the melting process (signaled by the fact that it is expanding). Yet it is not bloating as this type of raw clay normally would. The cone 2 and three bars have reached zero porosity also. Other clays that fire to very similar color begin to bloat long before they reach zero porosity.

Cone 04 terra cotta cross section close-up with glaze

Cone 04 terra cotta cross section close-up with glaze

The glaze is well melted, but the interfacial zone with the body is very narrow. It is basically just stuck on the surface. The body is not developing any clearly visible glassy phases as does porcelain and stoneware, so not surprisingly, its strength is much lower than vitrified clay bodies at higher temperatures. However it is possible to add a frit and glass-bond the particles at cone 02 (at much higher cost of course). Not surprisingly, glazes must be more closely tuned to match the thermal expansion of the body for lower temperatures (since they are not stuck on as well).

Cone 6 iron stoneware cross section close-up with glaze

Cone 6 iron stoneware cross section close-up with glaze

The glaze is well melted, but the interfacial zone with the body is wider than terra cotta but much narrower than for porcelain. The body is developing glassy phases as does porcelain and stoneware and its color has changed from red to brown. However it is possible to add a frit and glass-bond the particles at cone 02 (at much higher cost of course). Not surprisingly, glazes must be more closely tuned to match the thermal expansion of the body for lower temperatures (since they are not stuck on as well).

A clay that has negative shrinkage during the glaze firing

A clay that has negative shrinkage during the glaze firing

It seems impossible but that is what happens with this one at cone 03. This is a native material that was found on the banks of the South Saskatchewan river near Hayes, Alberta (and brought to me for testing). Even when fired to maturity (around cone 2) it still has 10% porosity! This specific sample has even been ball milled for hours and it still does not shrink. And it still feels sandy on the potters wheel. It also has incredible dry strength, the highest I have ever seen. Yet its drying shrinkage is still less than 7% (that of a typical plastic pottery clay). Plus it has very high plasticity. This behavior defies logic, I have found a good explanation.

Example of test bars stacked into an electric kiln for firing

Example of test bars stacked into an electric kiln for firing

These have already been measured to deduce drying shrinkage. After firing they will be measured again to calculate the firing shrinkage. Then they will be weighed, boiled in water and weighed again to determine the water absorption. Fired shrinkage and absorption are good indicators of body maturity.

Out Bound Links

  • (Tests) SHAB - Shrinkage/Absorption Test
  • (Glossary) Bloating

    Bubbling occurs in some clay bodies (especially those made from coarsely ground raw materials) if they are over fired; others just melt without bloating. Aggravating conditions that produce bloating include the presence of mineral particles (e.g. sulfates) that generate gases during the the firing s...

  • (Glossary) Vitrification

    Vitrification is the solidification of a melt into a glass rather than a crystalline structure (crystallization). Glass, clay bodies and glazes vitrify, but in ceramics use of the term focuses most on clay bodies. Vitrification is a process. Bodies do not have specific vitrification points. As cl...

In Bound Links

  • (Project) Ceramic Tests Overview

    Every ceramic production facility should have some sort of materials, body and glaze testing program in place. Amazingly, many large factories have little or no testing! Then one day the kiln operator...

  • (Glossary) Firing Shrinkage

    As kiln temperature increases bodies densify (particles pack closer and closer). As temperature continues to rise, some of the particles begin to melt and form a glass between the others that pulls them even closer. Some of the particles shrink themselves, kaolin is an example (in the raw state part...

  • (Glossary) Terra cotta

    'Terra Cotta' (Italian for 'cooked earth') is red burning earthenware. It has been made for thousands of years by indigenous cultures, most often unglazed. If glazed, high lead content mixtures have been traditional. It is fired at much lower temperatures than stoneware so, not surprisingly, it is n...

  • (Glossary) Dishwasher Safe

    Dishwasher safe ceramic ware is generally ware that is not overly absorbent and therefore will not water log in use over time (and therefore weaken and become a microwave oven hazard). Dishwasher safety also refers to the ability of ware to handle the changes in temperature it will be subjected to ...

  • (Glossary) Stoneware

    Most often the term stoneware refers to a high fired (about 1200C+) ceramic clay:feldspar:quartz blend that is semi-vitreous (not translucent and not zero porosity). To appreciate the scope that stoneware can encompass it is helpful to contrast it with porcelains (this description is for people who ...


By Tony Hansen




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved