Digitalfire Ceramic Glossary

•The secret to cool bodies and glazes is alot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at
•The place to get the knowledge is

Sign-up at today.


On the theoretical chemistry level, a flux is an oxide that lowers the melting or softening temperature of a mix of others. Fluxing oxides interact with others, sometimes their combinations flux much more than logic would expect given their individual performance. Normally, the more kinds of fluxes present in a mix the lower its melting temperature is (called the 'mixed oxide effect'). Fluxes interact with the surface molecular structure of other materials and pull them away (dissolve them) molecule-by-molecule.

Examples of fluxing oxides for high temperature glazes are K2O, Na2O, CaO, SrO, Li2O, MgO, ZnO (CaO and MgO are not active at lower temperatures). In glaze chemistry, each of these oxides is an individual with its own optimal percentage and interaction with silica and alumina. Fluxing oxides make up a minor part of the glaze, they interact with the SiO2 glass former and Al2O3 (and other fluxes). If used in this way, CaO, for example, reacts strongly with stoneware and porcelain glazes to lower their melting temperature.

Colorants can also be powerful fluxes. Copper, cobalt and manganese all melt very actively in oxidation and reduction. However iron, a refractory material in oxidation, is a strong flux in reduction.

When the term flux is used on the material level, it is referring to the fact that the chemistry of the material contributes a significant amount of one or more of the fluxing oxides. Feldspar is an excellent example of a natural mix of refractory and fluxing oxides that, together, melt at a fairly low temperature. However, raw materials commonly viewed as fluxes, do not always melt well by themselves. Dolomite, like calcium carbonate, is a stoneware glaze fluxing material. But by itself it can be dead-burned and used as a heavy duty refractory for ladles and slag furnaces! Talc, in small percentages in middle temperature clay bodies, acts as a strong flux. However in large percentages, it is refractory also. Calcium carbonate is another example. While being a strong glaze flux at higher temperatures, it is refractory in a 75:25 mix with bentonite (where the conditions for interaction to produce a glass are not present).

B2O3 is a very low melting oxide, the ceramic industry depends very heavily on it. But B2O3 is not a flux, it is a low melting glass (it does not depend on percentage and interaction to activate, it works across the entire temperature range used in traditional ceramics). Almost all frits contain at least some B2O3.

Fluxing oxides in frits melt much better than in raw materials. MgO is an excellent example. Glazes that employ frit to supply the MgO melt much better than those employing dolomite or talc. SrO is a similar story.

Understandably, predicting the effects of a flux addition to a glaze (e.g. melting temperature) is very complex (involving interactions, eutectics, proportions, premelting, atmostphere and the physical and mineralogical properties of the particles). For this reason, ceramic chemistry is applied much more in a relative sense than absolute to predict melting temperature.


Add 5% caclium carbonate to a tenmoku. What happens?

In the glaze on the left (90% Ravenscrag Slip and 10% iron oxide) the iron is saturating the melt crystallizing out during cooling. GR10-K1, on the right, is the same glaze but with 5% added calcium carbonate. This addition is enough to keep most of the iron in solution through cooling, so it contributes to the super-gloss deep tenmoku effect instead of precipitating out.

Firing shrinkage variation between various clays

Example of various materials mixed 75:25 with volclay 325 bentonite and fired to cone 9. Plasticities and diring shrinkages vary widely. Materials normally acting as fluxes (like dolomite, talc, calcium carbonate) are refractory here because they are fired in the absence of materials they react normally with.

Frits work much better in glaze chemistry

The same glaze with MgO sourced from a frit (left) and from talc (right). The glaze is 1215U. Notice how much more the fritted one melts, even though they have the same chemistry. Frits are predictable when using glaze chemistry, it is more absolute and less relative. Mineral sources of oxides impose their own melting patterns and when one is substituted for another to supply an oxide in a glaze a different system with its own relative chemistry is entered. But when changing form one frit to another to supply an oxide or set of oxides, the melting properties stay within the same system and are predictable.

How do metal oxides compare in their degrees of melting?

Metallic oxides with 50% Ferro frit 3134 in crucibles at cone 6ox. Chrome and rutile have not melted, copper and cobalt are extremely active melters. Cobalt and copper have crystallized during cooling, manganese has formed an iridescent glass.

Frits melt so much better than raw materials

Feldspar and talc are both flux sources (glaze melters). But the fluxes (Na2O and MgO) within these materials need the right mix of other oxides with which to interact to vitrify or melt a mix. The feldspar does source other oxides for the Na2O to interact with, but lacks other fluxes and the proportions are not right, it is only beginning to soften at cone 6. The soda frit is already very active at cone 06! As high as cone 6, talc (the best source of MgO) shows no signs of melting activity at all. But a high MgO frit is melting beautifully at cone 06. While the frits are melting primarily because of the boron content, the Na2O and MgO have become active participants in the melting of a low temperature glass. In addition, the oxides exist in a glass matrix that is much easier to melt than the crystal matrix of the raw materials.

At 1550F Gerstley Borate suddenly shrinks!

These balls were fired at 1550F and were the same size to start. The Gerstley Borate has suddenly shrunk dramatically in the last 40 degrees (and will melt down flat within the next 50). The talc is still refractory, the Ferro Frit 3124 slowly softens across a wide temperature range. The frit and Gerstley Borate are always fluxes, the talc is a flux under certain circumstances.

Stains having varying fluxing effects on a host glaze

Plainsman M340 Transparent liner with various stains added (cone 6). These bubbles were fired on a bed of alumina powder, so they flattened more freely according to melt flow. You can see which stains flux the glaze more by which bubbles have flattened more. The deep blue and browns have flowed the most, the manganese alumina pink the least. This knowledge could be applied when mixing these glazes, compensating the degree of melt of the host accordingly.

2% Copper carbonate in two different cone 6 copper-blues

The top base glaze has just enough melt fluidity to produce a brilliant transparent (without colorant additions). However it does not have enough fluidity to pass the bubbles and heal over from the decomposition of this added copper carbonate! Why is lower glaze passing the bubbles? How can it melt better yet have 65% less boron? How can it not be crazing when the COE calculates to 7.7 (vs. 6.4)? First, it has 40% less Al2O3 and SiO2 (which normally stiffen the melt). Second, it has higher flux content that is more diversified (it adds two new ones: SrO, ZnO). That zinc is a key to why it is melting so well and why it starts melting later (enabling unimpeded gas escape until then). It also benefits from the mixed-oxide-effect, the diversity itself improves the melt. And the crazing? The ZnO obviously pushes the COE down disproportionately to its percentage.

Out Bound Links

  • (Glossary) Refractory

    Refractory, as a noun, refers to a material that d...

  • (Glossary) Frit

    A ceramic glass that has been premixed from raw po...

In Bound Links

By Tony Hansen

Feedback, Suggestions

Your email address


Your Name


Copyright 2003, 2008, 2015 https://, All Rights Reserved