•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Firing Schedule


In most electric periodic kilns firing schedules are programmed into electronic controllers to control the rate-of-rise, soaking time and often the cooling curve. In industry firings are very fast, optimization of every stage is absolutely critical, in hobby ceramics and small companies firings are much slower and the awareness of the need to plan and adhere to firing schedules is less. While many periodic gas kilns also have electronic controllers, it is common to manually oversee the rate-of-rise and atmosphere of the firing. The thermal history to which ware is exposed in a tunnel kilns is controlled by the speed of the ware through the kiln and control of the heat and draft in various parts of the tunnel.

This is an often-overlooked aspect of the ceramic process and yet is very important, since it relates so directly to glaze quality and body maturity. The secret to the unique properties of many special purpose ceramic products (e.g. alumina ceramics, thermal expansion failure resistant ware, crystalline glazes, porcelains) and the consistency of many types of traditional ceramics lies in the firing curve. Engineers spend alot of time designing good firing schedules.

Schedules must account for the needs of the ware, the kiln, the environment and the budget. These include slow early heat-up to enable water to escape, reaching the desired state of maturity without cracking or other firing defects, attention to temperatures where sudden changes in body or glaze materials occur (e.g. volume changes associated with quartz, cristobalite inversion), the ability of the kiln to follow and the need to save energy. If well designed, it should be possible to predict the end of a firing accurately. For example, a cone 6-10 electric hobby kiln should finish within 5-10 minutes of the projected. Industrial kilns, likewise, should finish within minutes of the target. The ability to predict the end is an indicator of the quality and practicality of the schedule.

An account at insight-live.com provides an excellent environment to develop and maintain firing schedules as a part of a larger regimen of managing recipe, material and test data.

Firing schedules at insight-live.com

A cone 11 oxidation firing schedule used at Plainsman Clays (maintained in our account at insight-live.com). Using these schedules we can predict the end of a firing within 5-10 minutes at all temperatures. We can also link schedules to recipes and report a schedule so it can be taken to the kiln and used as a guide to enter the program.

The difficulty of vitrifying the base of heavy stoneware

This 1 gallon heavy crock was fired to cone 6 (at 108F/hr during the final 200 degrees) and soaked 20 minutes (in a electric kiln). The bare clay base should be the color of the top test bar (which has gone to cone 6). Yet, it is the color of the bottom bar (which has gone to cone 4)! That means the base only made it to cone 4. The vertical walls are the right color (so they made cone 6). It may seem that this problem could be solved by simply firing with a longer hold at cone 6. But electric kilns heat by radiation, that base will never reach the same temperature as the sidewalls!

More carbon needs to burn out than you might think!

Hard to believe, but this carbon is on ten-gram balls of low fire glazes having 85% frit. Yes, this is an extreme test because glazes are applied in thin layers, but glazes sit atop bodies much higher in carbon bearing materials. And the carbon is sticking around at temperatures much higher than it is supposed to (not yet burned away at 1500F)! The lower row is G1916J, the upper is G1916Q. These balls were fired to determine the point at which the glazes densify enough that they will not pass gases being burned from the body below (around 1450F). Our firings of these glazes now soak at 1400F (on the way up). Not surpisingly, industrial manufacturers seek low carbon content materials.

Plainsman iron red clays with rutile blue Alberta Slip glaze

Cone 6 mugs made from Plainsman M350 (left) and M390 dark burning cone 6 bodies. The outside glaze is Alberta-Slip-based GA6-C rutile blue and the inside is GA6-A base (20% frit 3134 and 80% Alberta Slip). That inside glaze is normally glossy, but crystallizes to a stunning silky matte when fired using the schedule needed for the rutile blue (cool 100F and soak, slow cool to 1400F).

How to get more accurate firings time after time

When I fire our two small lab test kilns I always include cones (I fire a dozen temperatures). I want the firing to finish when the cone is around 5-6 oclock. To make that happen I record observations on which to base the temperature I will program for the final step the next time. Where do I record these? In the schedules I maintain in our Insight-live.com group account. I use this every day, it is very important because we need accurate firings.

Why is the clay blistering on this figurine?

This is an admirable first effort by a budding artist. They used a built-in cone 6 program on an electronic controller equipped electric kiln. But it is over fired. How do we know that? To the right are fired test bars of this clay, they go from cone 4 (top) to cone 8 (bottom). The data sheet of this clay says do not fire over cone 6. Why? Notice the cone 7 bar has turned to a solid grey and started blistering and the cone 8 one is blistering much more. That cone 8 bar is the same color as the figurine (although the colors do not match on the photo). The solution: Put a large cone 6 in the kiln and program the schedule manually so you can compensate the top temperature with what the cone tells you.

Manually programming a typical electric hobby kiln electronic controller

I enter (and tune) programs manually and document them in my account at insight-live.com. This controller can hold six, it calls them Users. Whatever program I last entered or edited is the one that runs when I press "Start". When I press the "Enter Program" button it asks which User: I key in "2" (my cone 6 test bar firing program). Then it asks how many segments: I press Enter to accept the 3 (I am editing the program). After that it asks questions about each step (rows 2, 3, 4): the Ramp "rA" (degrees F/hr), the Temperature to go to (°F) to and the Hold time in minutes (HLdx). In this program I am heating at 300F/hr to 240F and holding 60 minutes, then 400/hr to 2095 and holding zero minutes, then at 108/hr to 2195 and holding 10 minutes. The last step is to set a temperature where an alarm should start sounding (I set 9999 so it will never sound). When complete it reads "Idle". Then I press the "Start" button to begin. If I want to change it I press the "Stop" button. Those ten other buttons? Don't use them, automatic firing is not accurate. One more thing: If it is not responding to "Enter Program" press the Stop button first.

Let me count the reasons this glossy white cone 6 glaze is pinholing

First, the layer is very thick. Second, the body was only bisque fired to cone 06 and it is a raw brown burning stoneware with lots of coarser particles that generate gases as they are heated. Third, the glaze contains zircopax, it stiffens the melt and makes it less able to heal disruptions in the surface. Fourth, the glaze is high in B2O3, so it starts melting early (around 1450F) and seals the surface so the gases must bubble up through. Fifth, the firing was soaked at the end rather than dropping the temperature a little first (e.g. 100F) and soaking there instead.

Slow cooling vs. fast cooling on a cone 6 transparent glaze

These are the inside uppers on two mugs made from the same clay with the same clear glaze. The one on the left was fired in a large electric kiln full of ware (thus it cooled relatively slowly). The one on the right was in a test kiln and was cooled rapidly. This glaze contains 40% Ferro Frit 3134 so there is plenty of boron and plenty of calica to grow the borosilicate crystals that cause the cloudiness in the glass. But in the faster cooling kiln they do not have time to grow.

The difference: Firing schedule!

These are the same glaze, same thickness, Ulexite-based G2931B glaze, fired to cone 03 on a terra cotta body. The one on the right was fired from 1850F to 1950F at 100F/hr, then soaked 15 minutes and shut off. The problem is surface tension. Like soapy water, when this glaze reaches cone 03 the melt is quite fluid. Since there is decomposition happening within the body, gases being generated vent out through surface pores and blow bubbles. I could soak at cone 03 as long as I wanted and the bubbles would just sit there. The one on the left was fired to 100F below cone 03, soaked half an hour (to clear micro-bubble clouds), then at 108F/hr to cone 03 and soaked 30 minutes, then control-cooled at 108F/hr to 1500F. During this cool, at some point well below cone 03, the increasing viscosity of the melt becomes sufficient to overcome the surface tension and break the bubbles. If that point is not traversed too quickly, the glaze has a chance to smooth out (using whatever remaining fluidity the melt has). Ideally I should identify exactly where that is and soak there for a while.

Out Bound Links

In Bound Links

  • (Glossary) Firing

    At it most basic level, firing is process of heati...

  • (Glossary) Water Smoking

    Refers to the period in firing where the last of t...

  • (Glossary) Boron, Borate

    The term 'boron' refers to the oxide B2O3. 'Borate...

  • (Articles)

    Firing: What Happens to Ceramic Ware in a Firing Kiln

    Understanding more about changes are taking place in the ware at each stage of a firing and you can ...

  • (Glossary) Candling

    The practice of slow-firing ware through the criti...


By Tony Hansen




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved