•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Earthenware


A clay fired at low temperatures (cone 010-02) where it does not develop maturity (vitrify). The term earthenware almost alway refers to red burning terra cotta ware (although it is a somewhat more general term referring to a wider range of colors and more primitive forming and firing techniques). Earthenwares are porous, sintering is the particle bonding mechanism (therefore ware is not nearly as strong as stonewares and porcelains). If glazed, ware is usually bright colored. Although the low fire clays from which earthenware is made can be burned higher to achieve much better strength, it is intentionally fired lower (usually because of lack of resources to burn higher or the need for porosity and thermal shock resistance intrinsic with this type of ware).

The porcelain is harder, but the terra cotta has it beat for thermal shock!

The porcelain is harder, but the terra cotta has it beat for thermal shock!

This terra cotta cup (center) is glazed with G2931G clear glaze (Ulexite based) and fired at cone 03. It survives 30 seconds under direct flame against the sidewall and turns red-hot before a fracture occurs (the unglazed one also survived 30 seconds, it only cracked, it did not fracture). The porcelain mug (Plainsman M370) is glazed with G2926B clear, it survived 15 seconds (even though it is much thinner). The porcelain is much more dense and durable, but the porous nature of the earthenware clearly withstands thermal shock much better. It is actually surprisingly durable.

Terra cotta and a surprising thing about thermal shock

Terra cotta and a surprising thing about thermal shock

This terra cotta cup is glazed with G2931G clear glaze (Ulexite based) and fired at cone 03. It survives 25 seconds under direct flame against the sidewall before a crack occurs. Typical porcelains and stonewares would survive 10 seconds. Super vitreous porcelains 5 seconds. This is a key advantage of earthenware. Sudden changes in temperature cause localized thermal expansion, this produces tension and compression that easily cracks most ceramics. But the porous nature of earthenware absorbs it much better. During initial testing I found better performance for glazed earthenware (vs. unglazed), but in later testing they proved to be fairly similar.

Cone 2: Where we see the real difference between terra cottas and white bodies

Cone 2: Where we see the real difference between terra cottas and white bodies

The terra cotta (red earthenware) body on the upper left is melting, it is way past zero porosity, past vitrified. The red one below it and third one down on the right have 1% porosity (like a stoneware), they are still fairly stable at cone 2. The two at the bottom have higher iron contents and are also 1% porosity. By contrast the buff and white bodies have 10%+ porosities. Terra cotta bodies do not just have high iron content to fire them red, they also have high flux content (e.g. sodium and potassium bearing minerals) that vitrifies them at low temperatures. White burning bodies are white because they are more pure (not only lacking the iron but also the fluxes). The upper right? Barnard slip. It has really high iron but has less fluxes than the terra cottas (having about 3% porosity).

Out Bound Links

  • (Glossary) Terra cotta

    'Terra Cotta' (Italian for 'cooked earth') is red ...

  • (Glossary) Majolica

    Pottery fired to a low temperature employing a red...

  • (Glossary) Stoneware

    Most often the term stoneware refers to a high fir...

  • (Glossary) Porcelain

    Traditional utilitarian porcelains are comparative...

In Bound Links


By Tony Hansen




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved