•The secret to cool bodies and glazes is a lot of testing.
•The secret to know what to test is material and chemistry knowledge.
•The secret to learning from testing is documentation.
•The place to test, do the chemistry and document is an account at https://insight-live.com
•The place to get the knowledge is https://digitalfire.com

Sign-up at https://insight-live.com today.

Drying Performance


Refers to the ability of a clay to dry without cracking. Lab results for drying factor and drying shrinkage along with observations of the materials performance in actual use give a well rounded picture of its drying performance. Clay with lower drying shrinkage normally dries well (without cracking) but can also dry poorly if it lacks dry strength. Likewise, clays with higher drying shrinkage normally dry poorly, but they can also be made to dry better by increasing dry strength or adding aggregate or fiber. Drying performance tests can be done in simple ways. Typical ones normally accelerate the drying of one section of a sample while slowing down water release in another section, this sets up a situation where the rigid section resists the shrinkage of the undried section. Differences in the type of failure provides opportunities to rate one clay against another.

A typical DFAC drying disk of an iron stoneware clay

A typical DFAC drying disk of an iron stoneware clay

The center portion was covered and so it lagged behind during drying, setting up stresses that caused the disk to crack. This test is such that most pottery clays will exhibit a crack. The severity of the crack becomes a way to compare drying performances. Notice the test also shows soluble salts concentrating around the outer perimeter, they migrated there from the center section because it was not exposed to the air.

How to interpret the crack in a DFAC drying disk

How to interpret the crack in a DFAC drying disk

Drying disks used for the DFAC test are 12cm in diameter and 5mm thick (wet). A crack pattern develops in almost all common pottery clays as they shrink during drying. This happens because the center portion is covered and stays soft while the perimeter dries hard. This sets up a tug-of-war with the later-drying inner section pulling at the outer rigid perimeter and forcing a crack (starting from the center). If the clay has high plasticity and dry strength it can pull so hard from the center that cracks appear at the outer dried edge to relieve the tension. Or, it can create cracks that run parallel to the outer edge but at the boundary between the inner and outer sections. The nature, number and width of the cracks are interpreted to produce a drying factor that can be recorded.

Grog does not always have the intended effect

Grog does not always have the intended effect

These DFAC drying performance disks show that minor additions of grog do not reduce the fired shrinkage of this medium fire stoneware much. Nor do they improve its drying performance. In this example, a 10% addition has not reduced shrinkage appreciably nor has it improved drying performance. The 20% addition has reduced the shrinkage and narrowed the crack, but it is still there and resembles the zero-grog version.

Large particle grogs are difficult to produce

Large particle grogs are difficult to produce

These particles are from a grog that has been milled and separated into its constituent sizes in the lab. As you can see it has a wide range of particle sizes, from 48 to finer than 200 mesh. When fired ceramic (like bricks) is ground the finer sizes often predominate. Because the coarser grades have a lower yield they can be much more expensive and harder to get. But they are the most effective in reducing the drying shrinkage and fired stability of structural and sculptural bodies.

Various grogs available in North America

Various grogs available in North America

Examples of various sized grogs from CE Minerals, Christy Minerals, Plainsman Clays. Grogs are added to clays, especially those used for sculpture, hand building and industrial products like brick and pipe (to improve drying properties). The grog reduces the drying shrinkage and individual particles terminate micro-cracks as they develop (larger grogs are more effective at the latter, smaller at the former). Grogs having a narrower range of particle sizes (vs. ones with a wide range of sizes) are often the most effective additions. Grogs having a thermal expansion close to that of the fired body, a low porosity, lighter color and minimal iron contamination are the most sought after (and the most expensive).

It shrinks much more yet cracks less. How is that possible?

It shrinks much more yet cracks less. How is that possible?

Two mugs have dried. The clay on the left shrinks 7.5% on drying, the one on the right only 6%. Yet it consistently cracks less! Not the slightest hairline crack, not even at the handle joins. Why? Green or dry strength. If the dry clay matrix has the strength it can resist cracking even if there are stresses from uneven drying. The clay on the right is made using Kentucky ball clay, which has good plasticity but fairly low drying strength. The clay on the left is a native terra cotta, very plastic and very strong in the green state (likely double or triple the white clay). To demonstrate further: If paper fiber were added to the white clay, it would not crack. Why? Not because it would shrink less with the added fiber, no, the shrinkage would stay the same. Increased strength imparted by the fiber would give it the power to resist cracking.

Fibers visible along a broken edge of a dried paper clay slab

Fibers visible along a broken edge of a dried paper clay slab

A broken section of dried paper clay (a kaolin-only porcelain). This contains 1% by weight paper fiber. Notice the fibers at the break, these give it great strength in the green state. At 1% there is a significant effect on the working properties of the plastic material. It is much tougher, resistant to tearing. But it is harder to achieve a smooth surface. 1% is likely the most paper you would want to put in a body for common use.

Can you dry a mug with handle in two hours? Yes.

Can you dry a mug with handle in two hours? Yes.

The lid of my firing kiln seems to be just the right environment for even drying, even of freshly thrown pieces. By the time this mug really got under way here the kiln was at 1000F and the lid was getting pretty hot. The bottom was the warmest and the top coolest, the exact opposite of how drying normally becomes uneven (the top drying first). This principle could be employed to make a heated drying chamber. The interior space could be kept at high humidity and a draft of air through it could remove humid air and the needed rate.

Examples of DFAC disk, SHAB bar, LOI bar for clay testing

Examples of DFAC disk, SHAB bar, LOI bar for clay testing

By preparing these three tests you can measure many properties of a clay body. These include drying shrinkage, fired shrinkage, porosity, drying performance, soluble salts content, water content and LOI.

Do grog additions always produce better drying performance?

Do grog additions always produce better drying performance?

This DFAC drying performance test compares a typical white stoneware body (left) and the same body with 10% added 50-80 mesh molochite grog. The character of the crack changes somewhat, but otherwise there appears to be no improvement. While the grog addition reduces drying shrinkage by 0.5-0.75% it also cuts dry strength (as a result, the crack is jagged, not a clean line). The grog vents water to the surface better, notice the soluble salts do not concentrate as much. Another issue is the jagged edges of the disk, it is more difficult to cut a clean line in the plastic clay.

DFAC disk under a heatlamp

DFAC disk under a heatlamp

The heat lamp dries the out edge in minutes (this photo makes it appear hotter than it really is). The center section of the disk is protected by the glazed bowl and takes an hour or more to dry. This sets up stresses that cause the disk to crack. The nature and size of the cracks enable establishing a drying factor value for the clay.

It is not the speed of drying, but how even it is

It is not the speed of drying, but how even it is

Half of these Plaisman Polar Ice mugs cracked. But I know exactly why it happened! After throwing them I put them on a slowly rotating wheelhead in front of a fan to stiffen them enough so I could attach the handles quickly. Of course, I forgot them and they got quite stiff on the lip (while the bottom was still wet). I quickly attached the handles and then covered them with cloth and plastic and let them sit for two days to let them even out. Notwithstanding that, that early gradient sealed their destiny. The lesson: At no time in the drying process should any part of a piece be significantly ahead of another part.

One way to avoid drying cracks on handle-joins of engobed mugs

One way to avoid drying cracks on handle-joins of engobed mugs

The foot ring on these hard mugs has already been trimmed. At the stiff-leather-hard stage an engobe was applied to the inside. This rewet the bodies of the mugs, almost to the same point as freshly-thrown. But the handles did not get rewetted. To re-dry these mugs to the point of being able to turn them over will take 4-6 more hours. But by that time the handles will be bone dry. To prevent that I waxed them after trimming. That slows their drying down enough to keep them even with the body of the mug. To dry ware successfully the key is to keep all parts of a piece of the same water content throughout the process.

Out Bound Links

  • (Tests) DFAC - Drying Factor
  • (Articles) The Black Art of Drying Ceramics Without Cracks

    Anything can be dried if it is done slowly and evenly enough. To dry faster optimize the body recipe, ware cross section, drying process and develop a good test to rate drying performance.

  • (Glossary) Firing Shrinkage

    As kiln temperature increases bodies densify (particles pack closer and closer). As temperature continues to rise, some of the particles begin to melt and form a glass between the others that pulls them even closer. Some of the particles shrink themselves, kaolin is an example (in the raw state part...


By Tony Hansen




Feedback, Suggestions

Your email address

Subject

Your Name

Message


Copyright 2003, 2008, 2015 https://digitalfire.com, All Rights Reserved